FINAL FOR ISSUE

Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney Co. Antrim N. Ireland BT53 7QL www.causewaygeotech.com

New Port of Galway

Primary Author:	Dr Paul Dunlop
Client:	Galway Harbour Company
Client's Representative:	Patrick J. Tobin & Co. Ltd
Completed:	17 May 2012
Report No.:	12-161
File Location:	12-161 report

Page No.

New Port of Galway

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTHORITY 1
2	SCOPE 1
3	DESCRIPTION OF SITE 1
4	SITE OPERATIONS.24.1Cable percussion boreholes24.2Rotary cored boreholes34.3Dynamic probing.34.4Cone penetration tests3
5	LABORATORY WORK
6	GROUND CONDITIONS.46.1General geology of the site.46.2Ground types.46.2.1Recent deposits.56.2.2Glacial soils.56.2.3Bedrock5
7	REFERENCES

Appendices

- Appendix A Site and exploratory hole location plans
- Appendix B Cable percussion borehole logs
- Appendix C Rotary cored borehole logs
- Appendix D Dynamic probe logs
- Appendix E CPT Report by Insitu Site Investigation Ltd
- Appendix F Laboratory test results

Document Control Sheet

Report No.:	12-161
Project title:	New Port of Galway
Client:	Galway Harbour Company
Client's Representative:	Patrick J. Tobin & Co. Ltd

Revision	Status	Report prepared by:	Report reviewed by:	lssue date
A02	Final	Paul Dunlop BEng PhD CEng MIEI	David Cameron BSc CEng MIEI	17 May 2012

The works were conducted in accordance with:

Site Investigation in Construction Part 3: Specification for Ground Investigation, Site Investigation Steering Group, published by Thomas Telford Ltd (1993)

British Standards Institute (1999) *BS 5930:1999, Code of practice for site investigations*. Incorporating Amendment Nos. 1 and 2, as partially replaced by:

- BS EN 1997-2:2007: Eurocode 7. Geotechnical design. Ground investigation and testing
- BS EN ISO 22475-1:2006: Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution
- BS EN ISO 14688-1:2002: Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- BS EN ISO 14688-2:2004: Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification
- BS EN ISO 14689-1:2003: Geotechnical investigation and testing. Identification and classification of rock. Identification and description
- BS EN ISO 22476-2:2005: Geotechnical investigation and testing. Field testing. Dynamic probing
- BS EN ISO 22476-3:2005: Geotechnical investigation and testing. Field testing. Standard penetration test

Methods of describing soils and rocks

Soil and rock descriptions are based on the guidance in Section 6 of BS 5930: 1999, *The Code of Practice for Site Investigation*, Amendment 1. The amendment revised the Standard to remove text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and EN ISO 14689-1:2003 and refers to the relevant standard for each affected subclause. However, the following terms are used in the description of fine-grained soils, where applicable:

- soft to firm: fine-grained soil with consistency description close to the boundary between soft and firm soil (Table 13 of BS5930).
- firm to stiff: fine-grained soil with consistency description close to the boundary between firm and stiff soil (Table 13 of BS5930).

Abbreviations used or	n exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample
Ρ	Nominal 100mm diameter undisturbed piston sample
В	Bulk disturbed sample
D	Small disturbed sample
W	Water sample
ES / EW	Soil sample for environmental testing / Water sample for environmental testing
SPT	Standard penetration test using a split spoon sampler (small disturbed sample obtained)
SPT (C)	Standard penetration test using 60 degree solid cone
x,x/x,x,x,x	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mm
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)
V VR	Shear vane test (borehole)Hand vane test (trial pit)Shear strength stated in kPaV: undisturbed vane shear strengthVR: remoulded vane shear strength
dd/mm/yy: 1.0 dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift
Abbreviations relating	g to rock core - reference Clause 44.4.4 of BS 5930: 1999
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of <i>solid core</i> to the total length of core run. <i>Solid core</i> has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of <i>solid core</i> pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.

New Port of Galway

1 AUTHORITY

On the instructions of Consulting Engineers, Patrick J. Tobin & Co. Ltd ("the Client's Representative"), on behalf of Galway Harbour Company ("the Client"), a marine investigation was undertaken at the above location to provide geotechnical information for input to the design and construction of a proposed new port.

This report details the work carried out both on site and in the geotechnical laboratory; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and variable conditions between exploratory holes

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included cable percussion and rotary cored boreholes, dynamic probing, soil sampling, in-situ and laboratory testing, cone penetration tests and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the site of the proposed new harbour lies to the south of the existing lock gated harbour and would be accessed through the existing harbour estate.

The development will consist of a new quay, large areas of reclaimed land, a marina and a new dredged approach channel.

4 SITE OPERATIONS

The Site Operations, conducted on 10 March - 22 March 2012, comprised:

- eight cable percussion boreholes
- three rotary cored boreholes
- twenty dynamic probe holes
- cone penetration tests

All exploratory work was carried out from a C5 Combi-float jack-up platform supplied and operated by ABCO Marine.

All site works were supervised by a chartered geotechnical engineer from Causeway Geotech.

The jack-up platform was 18m x 18m in plan area with 17m long jack legs. The jack-up was manoeuvred to the locations using a workboat. A safety boat provided a watching brief and also provided access to the platform for the crew and Engineer's representatives.

The locations of the test holes were set out from co-ordinates supplied by the Client's representative and buoys placed to allow accurate navigation to each test location.

The bed levels were recorded by measuring the water level to bed at the test location using tidal prediction software with confirmatory checks of pier to water at the end of the breakwater. On each exploratory hole log the "ground level" is reported - this level is a record of the sea bed level.

All work was undertaken under a watching brief by a Marine Mammal Observer who was approved by the National Parks and Wildlife Service (NPWS) for this project. The Marine Mammal Observer's findings were reported directly to the NPWS.

The exploratory holes and insitu tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.1 Cable percussion boreholes

Eight boreholes (BH01 - BH08) were put down in 200mm diameter using a Dando 3000 percussion boring rig. All boreholes meet refusal in either Meta-Gabbro boulders within the glacial till or possible Granite bedrock, at a depths ranging 3.40m - 15.00m.

Disturbed (small bag and bulk bag) samples and undisturbed thin wall piston samples and were taken within the encountered strata.

The piston samples were immediately waxed to prevent moisture loss and packed with bubble wrap to prevent slumping within the tube. The tubes were stored vertically and transported to Queens University in Belfast for subsequent testing.

Standard penetration tests were carried out at intervals using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible.

Vane tests were also carried out within the strata using a 150mm x 75mm Farnell Vane Tester and pilcon hand vane tester. The Farnell Vane tester was used to measure both peak vane and remoulded shear strengths.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Appendix B presents the borehole logs.

4.2 Rotary cored boreholes

Three rotary cored boreholes (RC01 - RC03) were put down as extensions of shell and auger boreholes taken into bedrock by means of symmetrix rotary cased percussive techniques.

The coring was undertaken using a Comacchio 205 drilling rig using T2-86 core barrels in boreholes RC02 and RC03 and T2-101 in borehole RC01 due to damage to the T2-86 core barrel in the previous boreholes.

The cores were placed in wooden core boxes and logged onsite by the Causeway Geotech Chartered Geotechnical Engineer.

Appendix C present the rotary cored borehole logs.

4.3 Dynamic probing

Twenty dynamic probes (DP01 - DP20) were conducted using the DPSH-B method as described in EN ISO 22476-2. The method entails a 63.5kg hammer falling 0.75m onto a 90° cone of 50.5mm diameter.

Appendix D provides the dynamic probe logs in the form of plots, against depth, of the number of blows per 100mm penetration.

4.4 Cone penetration tests

Seven cone penetration tests (CPTu) were carried out by a specialist sub-contractor, Insitu Site Investigation.

Porewater dissipation tests were scheduled but as the porewater levels did not rise above ambient levels, these tests were not undertaken.

These results are presented in a separate report detailed in Appendix E.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

Laboratory testing of soils comprised:

- soil classification tests: moisture content, Atterberg Limit and particle size distribution analysis.
- consolidation tests: one dimension oedometer consolidation test
- strength tests: unconsolidated undrained triaxial test without the measurement of porewater pressure and consolidated undrained triaxial test with the measurement of porewater pressure
- rock classification tests: petrographic analysis
- rock tests: unconfined compressive strength and point load

The test results are presented in Appendix F.

6 GROUND CONDITIONS

6.1 General geology of the site

The 1:100,000 Bedrock Geology Map of the area inshore of the site (Geological Survey of Ireland, 2003) shows the bedrock to be undifferentiated strata of the metagabbro and orthogneiss suite of the Ordovician period, rocks formed approximately 440-490 million years ago.

Metagabbro is metamorphosed coarsely crystalline igneous rock, iron and magnesium-rich with little or no quartz. The rock was originally formed by solidifying from magma (igneous) and was subsequently altered by heat and/or pressure with accompanying deformation (metamorphoric). Similarly, the orthogneiss is a banded rock formed by metamorphosis of an igneous rock.

6.2 Ground types

The boreholes revealed the following ground types, listed in stratigraphical order:

6.2.1 Recent deposits

The Recent marine deposits are generally very soft grey slightly sandy - sandy silts with layers of silty - very silty sand.

The silt contents are typically high with generally no / very low sand or gravel content and very low clay content.

There are variable amounts of shells, mostly oyster shells, within the marine deposits varying from slight to moderate levels. In BHRC01 a layer of oyster shells was encountered from 2.60m - 3.00m below seabed.

The Atterberg Limits indicate soils in the intermediate to very high plasticity ranges, with some concentration in the intermediate range. The measured plasticity values of the silts, and the plotting of several samples above the A-line, are a consequence of the organic content which aids retention of moisture in the test specimens.

6.2.2 Glacial soils

The glacial soils include Glacial Till and Fluvio-Glacial deposits: they were very stiff sandy gravelly CLAY/SILT and silty, sandy GRAVEL.

There are significant levels of cobbles and boulders within the glacial till. These consist generally of subangular to subrounded meta-gabbro derived material.

6.2.3 Bedrock

The bedrock encountered was generally a very strong Granite.

The recovery in the rotary boreholes was generally good with a total core recovery of over 80%.

7 REFERENCES

British Standards Institute (1990) BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.

British Standards Institute (1999) BS 5930:1999, Code of practice for site investigations. Incorporating Amendment No. 1 of December 2007.

Building Research Establishment (2005) BRE Special Digest 1, Concrete in aggressive ground.

Building Research Establishment (2007), BRE Digest 365: Soakaways.

APPENDIX A

Site and exploratory hole location plans

•

APPENDIX B

Cable percussion borehole logs

Cau	seway	Ge	ote	ch Ltd	Proje 12-1	ct No. Proje 61 Nam	ect e: New Port of C	Galway		Boreho BH	le No. 01
Method ar Percussio	nd Equipment n boring 0.00-	t: 7.50m	Dando	2000	Co-or 13035	ds: 53.0mE	Client: Galwa	ay Harbour Com	pany	Sheet ?	1 of 1
					22440	9.0mN	Engineer: Patric	⊧k ⊳bin & Co. Ltd		Scale:	1:50
					Grour	nd Level:	Dates: 10/03	3/2012		Driller:	
Denth (m)	Sample / Test	Casing	Water	Field Peco	-1.201	Level Dept	h Stratum Descript	tion		Legend &	Backfill/
0.00	SPT	(m)	(m) dry	N=0	<u>us</u>	(Thickness	- Very soft light gre	y slightly sandy SI	LT	Water Strike	s Installs
0.00 1.00 1.00 2.00 2.00 3.00 3.00-3.80	D SPT D SPT D P	1.00	dry dry dry	N=0 (0,0,0,0,0,0) N=0 N=0 (0,0,0,0,0,0) 800mm Recovery V:7kPa / VR:	, 1kPa	(1.60) -2.80 1.6	Very soft grey slig sandy SILT with s is fine to coarse	ll content . Sand is c odour noted). htty organic slight mall shell content	s fine ly i. Sand	(x + x + x) (x + x) + x (x +	
5.00 5.00-5.75 5.50 6.00 6.00	D P IVN 1 SPT D	6.00	dry dry	750mm Recovery V:8kPa / VR: N=2 N=2 (1.0,1.0,1.0)	, 1kPa	(5.10)				$(x_{1}, x_{2}, x_{3}, x_{4})$ (x_{1}, x_{2}, x_{3}) (x_{2}, x_{3}, x_{3}) (x_{3}, x_{3}, x_{3}) (x_{3}, x_{3}, x_{3}) (x_{3}, x_{3}, x_{3}) (x_{3}, x_{3}, x_{3}) $(x_{3}, $	
7.00 7.00 7.30 7.50	SPT(c) B SPT	7.00	dry dry	50/181mm 181mm (6.7.7.8.3 10/03/2012 50/20mm 20mm (25.50)	⁵⁾	-7.90 6.7((0.60) -8.50 7.3(-8.70 7.5(Medium dense gr subrounded fine t fine to coarse Strong grey fine to GABBRO End of	ey slightly silty sar o coarse GRAVEL o medium grained Borehole at 7.50 r	ndy Sand is META m		
	Туре			1				iseling:	Water Strikes		
Remarks Hand var 1.8m = 6 3.0m = 7 5.0m = 8	:: ne test results: .0kPa, 2.3m = .3kPa, 4.0m = .1kPa, 6.5m =	: 6.5kP : 7.6kP : 10.2k	a, a, Pa	isering: n to time (m) (hh:mm)) 7.50 01:00	Valet Strikes: Struck rising to time (m) (m) (min) No Groundwater Encountered Casing:	Last Re 19/04/	vised: 2012				
U100 not	attempted in	Glacial	Till du	e to high cobl	ole and	boulder con	tent.		to (m) dia. (mm) 7.50 200	(c) Causeway G	geotech.com

Cau	seway	Geo	oteo	ch Ltd	Proje 12-1	ct No. 61	Projec Name	t : New Port	of Galway			Boreho BH	ole No. 02
Method ar	nd Equipment	: 3 40m	Dando	2000	Co-oro	ds: 19 0mF	<u> </u>	Client: G	alway Harb	our Com	bany	Sheet '	1 of 1
	r borning 0.00	0.4011	Dunuo	2000	22411	1.0m	- N	Engineer: P	atrick	`o I td		Scale:	1:50
					Grour	nd Lev	el:	Dates: 1	1/03/2012			_ Driller:	СС
Depth (m)	Sample / Test	Casing	Water	Field Booo	-1.00r	nCD Level	Depth	Stratum Door	ription			Logger: Legend &	DC Backfill/
0.00	D	(m)	(m)			(Thic	kness)	Very soft gre	y slightly san	dy SILT w	ith	Water Strike	s Installs
0.00 1.00 1.00 2.00 2.50 3.00 3.30 3.30	D SPT D B D SPT B	1.00 2.00 3.30	dry dry	N=0 N=25 N=25 (0.0.3.6.8.8 50/20372012 30mm (25,50)) dry	(2. -3.15 (0. -4.10 -4.40	15) 2.15 95) 3.10 3.40	Very soft gre high oyster s noted) Very stiff gre sandy SILT v low boulders coarse. Gra subrounded boulders are Strong pink, GRANITE Er	y slightly grat hell content of y slightly grat y slightly grat content. San vel is subang fine to coarso angular light grey and d of Borehol	velly slight (organic o le content d is fine to pular to e. Cobble d black sp e at 3.40 r	ly and s and eckled n		
Remarks U100 not	Type : attempted in 0	Glacial	Till due	e to high cobl	ble and	boulde	er conte	ent.	Chiseling: From to (m) (m) 2.60 3.40 3.10 3.40	time ((hh:mm) 02:00 01:00	Water Strikes: Struck rising to time (m) (m) (min) No Groundwater Encountered Casing: to (m) dia. (mm) 3.40 200	Last Re 19/04/	evised: 2012 geotech.com Beotech.Ltd

Cau	seway	Ge	ote	ch Ltd	Proje	ect No. 161	Projec Name:	t New Por	rt of Galway			Borehole No. BH03		
Method a	nd Equipmen	It:	Dando	2000	Co-or	ds:		Client: (Galway Harbo	our Com	pany	Sheet ?	l of 1	
reicussio	in boning 0.00	-9.0011	Danuo	2000	2241 ²	12.0mN	-	Engineer:	Patrick			Scale:	1:50	
					Grou	ndlev	مان	Dataar	J. Tobin & C	o. Ltd		Driller:	cc	
					-1.60	mCD	ei.	Dates:	12/03/2012			Logger:	DC	
Depth (m)) Sample / Test	Casing t Depth (m)	Water Depth (m)	Field Recor	rds	Level (Thicl	Depth kness)	Stratum Des	cription			Legend & Water Strike	Backfill/ s Installs	
0.00	D					-	-	Very soft gre shell conten	ey very sandy s t. (organic od	SILT with	medium	$\times $		
							-				,	$\times $ $\times \times \times$		
							-					\times		
1.00	SPT	1.00	dry	N=1			-	-				$\times $ $\times \times $		
1.00							-	-				\times		
						(3.	30)					\times \times \times \times \times \times \times \times		
2.00	SPT	2.00	drv	N=0			-	-				$\times $		
2.00	D			N=0 (0,0,0,0,0,0)			-	-				\times \times \times \times \times \times		
							-					$\times $		
							-					$\times $ $\times \times \times$		
3.00 3.00	SPT D	3.00	dry	N=0 N=0 (1,0,0,0,0,0)			-					\times		
						-4.90	3.30-	Very soft lig	ht grey slightly	sandy				
							-	SIL I/CLAY				$\begin{array}{c} \times \times \times \times \times \times \\ \times \times \times \times \times \times \end{array}$		
4.00	D		dry	600mm Recovery	/		-					$\begin{array}{c} \times \times \times \times \\ \times \times \times \times \\ \times \times \times \times \\ \times \times \times \times $		
4.00-4.90	P						-							
							-	-						
5.00	IVN 1			V·7kPa / V/R·	1kPa	(3.	- 30) _					$\begin{array}{c} \times \times \times \times \times \times \\ \times \times \times \times \times \times \\ \times \times \times \times \times $		
5.00	D			•./ ki u / •/ ki	na u		-					$\begin{array}{c} \times \times \times \times \times \\ \times \times \times \times \times \\ \times \times \times \times \times \end{array}$		
							-	-				$\frac{\times \times \times \times \times}{\times \times \times \times}$		
							-							
6.00 6.00-6.60	D P		dry	300mm Recovery	(-							
							-	-				$\begin{array}{c} \times \times \times \times \\ \times \times \times \times \\ \times \times \times \times \end{array}$		
						-8.20	6.60-	Medium der	ise grey sandy	very silty	1	<u>××××</u> × ×		
7.00	SPT(c)	7.00	dry	N=21		(0.	90) _	subrounded	Tine to coarse	GRAVEI	-	× × × × ×		
7.00	в			N=21 (3,4,5,5,5,6)		-	-				× × × × × ×		
						-9.10	7.50	Very stiff gre	ey slightly sand	dy gravell	y Sand ia	× × × × ×		
8 00	SPT	8 00	dry	N=50			-	fine to coars	eulum coddle se. Gravel is s fine to coarse	subangula	sanu is ir to s are	X X X X X X X X X X X X X X		
8.00	В	0.00	ary	N=50 (7,10,10,11	,14,15)		-	subangular	to subrounded			****** ******** ******		
						(1.	90)					***** ******		
							-					~*~X,X,X X * X X X * X X X X		
9.00 9.00	SPT B	9.00	dry	58/110mm 110mm (10,12,15	,43)		-	-				× × × × × * × × × × × × × × ×		
				12/02/2012	de i	-11.00	9.40							
				12/03/2012	ury	-11.20	9.60	E	nd of Borehole	e at 9.60 i	n			
	Type						-	-						
Remarks U100 not	s: t attempted in	Glacial	Till du	e to high cobb	ble and	l boulde	er conte	ent.	Chiseling: From to (m) (m) 9.40 9.60	time (hh:mm) 01:00	Water Strikes: Struck rising to time (m) (m) (min) No Groundwater Encountered	Last Re 19/04/2	vised: 2012	
											Casing:		AGS	
											to (m) [–] dia. (mm) 9.60 200	www.causeway	geotech.com	
l												(c) Causeway G	eotech Ltd	

Cau	seway	Ge	oteo	ch Ltd	Project 12-16	No. Proje Name	ct e: New Port of	^r Galway		Borehole BH0	e No. 4
Method ar Percussio	nd Equipment n boring 0.00-	t: 15.00n	n Dand	o 2000	Co-ords 130594	: OmE	Client: Gal	way Harbour Com	pany	Sheet 1	of 2
	g				223796.	0mN	Engineer: Patr	rick Tobin & Co. I td		Scale: 1	:50
					Ground	Level:	Dates: 10/0	03/2012		Driller: C	С
Dopth (m)	Samula (Teat	Casing	Water	Field Deere	-2.20m	CD evel Depti				Logger: D	C Backfill/
0.00	D	(m)	(m)		us (Thickness)	- Verv soft light g	rev slightly sandy S	ILT	Water Strikes	Installs
1.00	SPT	1.00	dry	N=2			vith slight shell noted)	content (organic o	Jour	×××× ××××× ××××× ××××× ××××× ××××× ×××××	
1.00	D			N=2 (1,0,1,0,1,0)		(2.70)	-				
2.00 2.00	SPT D	2.00	dry	N=1 N=1 (1,0,0,1,0,0)	-4	1.90 2.70		rev slightly sandy S	ΠТ	××××× ××××× ××××× ××××× ××××× ××××× ××××	
3.00-3.70 3.00	P B		dry	150mm Recovery	,	(1.90)	with slight shell	content. Sand is fi	ne		
4.00 4.00	IVN 1 D			V:7kPa / VR:	1kPa -6	.80 4.60					
5.00-5.90 5.00	P D		dry	800mm Recovery	,		 Very soft grey si sandy SILT with 	lightly organic sligh slight shell conter	tiy t	2. 30 G X X X 2. 30 G X X X 3. 30 G X 3.	
6.00 6.00	IVN 1 D			V:8kPa / VR::	2kPa					$\begin{array}{c} \times \times \times \times \operatorname{ska} \\ \times \operatorname{ska} \times \times \times \\ \times \operatorname{ska} \times \times \times \\ \times \operatorname{ska} \times \times \times \end{array}$	
7.50 7.50	SPT D	7.50	dry	N=0 N=0 (0,0,0,0,0)		(5.40)				$\times ab_{C} \times \times \times$ $\times \times \times \times ab_{C}$ $\times ab_{C} \times \times \times$ $\times ab_{C} \times \times \times$ $\times ab_{C} \times \times \times$ $\times ab_{C} \times \times \times ab_{C}$ $\times ab_{C} \times \times \times$ $\times ab_{C} \times \times \times$ $\times ab_{C} \times \times \times$ $\times ab_{C} \times \times \times$ $\times ab_{C} \times \times \times$	
8.00-8.90	P		dry	800mm Recovery	($\begin{array}{c} \langle \mathcal{M}_{G} \times \mathcal{K} \times \\ \langle \mathcal{M}_{G} \times \mathcal{K} \times \\ \langle \mathcal{M}_{G} \times \mathcal{K} \times \mathcal{M}_{G} \\ \langle \mathcal{M}_{G} \times \mathcal{K} \times \\ \rangle \end{array}$	
9.00	D									$\times \times \times \times $ when $\times $ when $\times \times \times$	
9.50 9.50	SPT B	9.50	dry	N=0 N=0 (0,0,0,0,0,0)			-			$\begin{array}{c} \times \times \times \times \mathrm{shle} \\ \times \mathrm{shle} \times \times \times \\ \times \mathrm{shle} \times \times \mathrm{shle} \\ \times \mathrm{shle} \times \times \times \\ \times \times \mathrm{shle} \times \times \mathrm{shle} \end{array}$	
Remarks	Type						Co C	ntinued next sheet hiseling:	Water Strikes:	L ant Brit	iced.
Hand var	ne test results:						Fr (m	rom to time n) (m) (hh:mm)	STRUCK FISING to time (m) (m) (min) No Groundwater Encountered	19/04/2	isea: 012
4.011 – 9 7.5m = 9 0.0m - 8. 12.0m = U100 not	kPa, 9.0m = 1 5kPa, 9.0m = 1 5kPa, 11.0m = 10.5kPa t attempted in	0kPa, = 8.0kF Glacial	² Pa, Till du	e to high cobl	ole and bo	oulder cont	ent.		Casing: to (m) dla. (mm) 15.00 200	ISO 9002 WWW.causewayge (c) Causeway Geo	AGS otech.com

Caus	seway	Ge	ote	ch Ltd	Proje 12-1	ct No. Proje 61 Name	ct :: New Port of Galway		Borehole No. BH04	
Method an Percussior	nd Equipment	:: 15.00n	n Dand	lo 2000	Co-or 13059	ds:)4.0mE	Client: Galway Harbour C	ompany	Sheet 2	e of 2
	Ū				22379	96.0mN	Engineer: Patrick		Scale: 1:50	
					Grour	nd Level:	Dates: 10/03/2012		Driller: CC	
		Casing	Water		-2.20	mCD			Logger:	
Depth (m)	Sample / Test	Depth (m)	Depth (m)	Field Reco	rds	(Thickness)	Stratum Description	Water Strikes	Installs	
11.00 11.20-11.70 13.20 13.20 13.20	D P SPT B D	13.20	dry	0.00mm Recover 50/265mm 265mm (4,7,8,8,1 10/03/2012	y 0,24) dry	-12.20 10.00 (2.50) -14.70 12.50 (1.90) -16.60 14.40 (0.60) -17.20 15.00	Very stiff grey gravelly sandy CL medium cobble content. Sand i coarse. Gravel is subangular fil coarse. Cobbles are subangular meta-gabbro Fines washing out of recov from 12.50m Strong grey pink and dark grey s coarse grained GRANITE End of Borehole at 15	AY with s fine to le to r of mainly pred gravel 		
Remarka	Туре						Chiseling:	Water Strikes:		
Remarks: Hand van 4.0m = 9k 7.5m = 9k 0.0m - 8.5	: «Pa, 6.0m = 1 «Pa, 9.0m = 1 5kPa, 11.0m :	1.5kPa 0kPa, = 8.0kF	a Pa,				From to time (m) (m) (hh:m 14.70 15.00 01:00	Struck rising to time (m) (m) (min) No Groundwater Encountered	19/04/2	vised: 2012 AGS
12.0m = 2 U100 not	attempted in	Glacial	Till du	e to high cobl	ole and	boulder con	ent.	to (m) dia. (mm) 15.00 200	(c) Causeway G	eotech.com eotech Ltd

Cau	seway	Ge	ote	ch Ltd	Proje 12-1	ct No. Pro 61 Na	ojec ime:	t New Por	t of Galway		Boreho BH(le No.)5	
Method a	nd Equipment	t: 9 80m	Dando	2000	Co-or 13059	ds: 95.0mF		Client: 0	Galway Harbour Com	pany	Sheet 1 of 1		
	in borning c.co	0.0011	Banao	2000	22379	98.0mN		Engineer: F	Patrick		Scale: 1:50		
					Grou	nd Level:		Dates:	J. Tobin & Co. Ltd		Driller: 0	00	
	г	Casing	\Mator	ļ	-2.90	mCD					Logger:	DC	
Depth (m)) Sample / Test	Depth (m)	Depth (m)	Field Recor	rds	(Thicknes	eptn ss)	Stratum Des	Stratum Description			Backfill/ s Installs	
1.00 1.00	SPT	1.00	dry	N=2 N=2 (0,0,0,1,0,1)				Very soft gre is fine to coa	ey slightly sandy SIL I . arse (organic odour not	Sand ed)			
						(2.80)	-				× × × × × × × × × × × × × × × × × × × ×		
2.00 2.00	SPT D	2.00	dry	N=1 N=1 (0,1,0,0,1,0)									
3.00 3.00-3.90	D P		dry	800mm Recovery	,	-5.70 2	- 80. - - - - - - - - - -	Very soft gre slight shell o Casing 3.00m -	ey slightly sandy SILT w content. Sand is fine falling under own weigl · 5.00m	rith ht from	(X X X X) X X X X (X X X X) (X X X X)		
4.00 4.00	IVN 1 D			V:5kPa / VR:	1kPa								
5.00 5.00	IVN 1 D			V:6kPa / VR:	1kPa	(5.40)							
6.00 6.00-6.90	D P		dry	800mm Recovery	1								
7.00 7.00	IVN 1 D			V:6kPa / VR:	1kPa			Methan blew pli	e pocket encountered a ug of clay up the hole a air	ıt 7.30m - nd 2.0m	X X X X X X X X X		
8.00 8.00-8.10	D P		dry	0.00mm Recover	У	-11.10 8	.20-						
8.50 8.50	SPT B	8.50	dry	50/105mm 105mm (10,12,19	,31)	(1.40)		very stiff gre SILT with m fine to coars subrounded subangular	ey slightly sandy gravell edium cobble content. e. Gravel is subangula fine to coarse. Cobble to subrounded	y Sand is ır to s are			
9.50 9.50 9.60-9.80 9.80	SPT B B SPT Type	9.50 9.80	dry dry	50/3mm ^{3mm (25,50)} 12/03/2012 50/2mm 2mm (25,50)	dry	-12.50 9 -12.70 9	.60 -	Strong pink,	grey and black speckle	bd	* * * * * * • * * * * *		
Remarks U100 not	:: t attempted in	Glacial	Till du	e to high cobl	ole and	boulder co	onte	ent.	Chiseling: From to time (m) (m) (hh:mm) 9.60 9.80 01:00	Water Strikes: Struck rising to time (m) (m) (min) No Groundwater Encountered	Last Re 19/04/2	vised: 2012	
									1	Casing: to (m) dia. (mm) 9.80 200	ISO 9002 WWW.causewayG (c) CausewayG	AGS teotech.com eotech Ltd	

Cau	seway	Ge	otec	ch Ltd	Project 12-16	t No. Proje Nam	ect e: New	Port of Galway			Boreho BH	le No. 0 5
Method an	d Equipmen	t: -9.80m	Dando	2000	Co-ords	s: 50mE	Client:	Galway Harb	our Com	pany	Sheet ?	l+ of 1
reicussioi	T borning 0.00-	-9.0011	Danuo	2000	223798	3.0mN	Engineer:	Patrick J. Tobin & C	Co. Ltd		Scale:	1:50
					Ground	d Level:	Dates:	12/03/2012			Driller:	DC
Depth (m)	Sample / Test	Casing Depth (m)	Water Depth (m)	Field Reco	rds L	_evel Dept (Thickness	th) Stratum [Description			Legend & Water Strike	Backfill/ s Installs
Depth (m)	Sample / Test	Casing Depth (m)	Water Depth (m)	Field Recor	rds (_evel Dept	th Stratum I	Description rained GRANITE End of Borehol	e at 9.80 i	m	Legend & Water Strike	Backfill/ s Installs
	Туре			L			-	Chiseling:		Water Strikes:		
Remarks: U100 not	: attempted in	Glacial	Till du	e to high cob ^l	ble and b	oulder con	tent.	From to (m) (m)	time (hh:mm)	Struck rising to time (m) (m) (min) No Groundwater Encountered	Last Re 19/04/	vised: 2012
										Casing: to (m) dia. (mm) 9.80 200	ISO 9002 WWW.causeway (c) Causeway (geotech.com

Cau	seway	Ge	oteo	ch Ltd	Proje 12-1	ct No. Projec 61 Name:	t New Port of Galway		Borehole No. BH06
Method ar Percussio	nd Equipmen n boring 0.00-	t: 9.10m	Dando	2000	Co-or 13090	ds: 17.0mE	Client: Galway Harbour Com	pany	Sheet 1 of 1
					22380	8.0mN	Engineer: Patrick		Scale: 1:50
					Grour	nd Level:	Dates: 12/03/2012		Driller: CC
D (1	.	Casing	Water		-2.10r	nCD Level Depth			Logger: DC
$\frac{Deptn(m)}{2.00}$	Sample / Test	Depth (m)	Depth (m)	Field Reco	rds	(Thickness)	Stratum Description	vith	Water Strikes Installs
1.00	CDT	1.00	4	N=2		-	very son grey signify saridy SLLTV medium shell content. Sand is fine coarse (organic odour noted)	oun e to	0000000 000000 000000 000000 000000 000000
.00	D	1.00	ury	N=2 (1,0,1,0,1,0)		(2.70)			X X X X X X X X X X X X X X X X X X X X
2.00 2.00	SPT D	2.00	dry	N=1 N=1 (1,0,0,1,0,0)		-4.80 2.70-	Von off grou elighthy organic eligh	al.,	×××× ×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××
3.00 3.00-3.90	D P		dry	700mm Recovery	,		sandy SILT with low shell content.	uy Sand	
1.00 1.00	IVN 1 D			V:5kPa / VR:	1kPa				
5.00 5.00	SPT D	5.00	dry	N=0 N=0 (0,0,0,0,0,0)		(4.10)			
5.00-6.90	Ρ		dry						
5.80-7.00 5.90 7.00	B IVN 1 B			V:25kPa / VR	8:3kPa	-8.90 6.80 -9.10 7.00	Firm brown subamorphous PEAT of decayed wood	with pieces	Shie Shie Shie Shie Shie Shie 2 Shie Shie 2 Shie Shie 2 Shie 3 Sh
	SPT	7.50	dry	N=32 N=32 (4,5,7,8,7,1	0)		sandy SILT with medium cobble co Sand is fine to coarse. Gravel is subangular to subrounded fine to c Cobbles are subrounded of mega-	ontent. oarse. gabbro and	
3.00	в					(1.90)	granite		
5.50	SPT	8.50	dry	50/105mm 105mm (8,10,13,3	37)				
3.90-9.10 9.10	B SPT	9.10	dry	12/03/2012 50/3mm 3mm (25,50)	dry	-11.00 8.90 -11.20 9.10 -	Strong dark grey META-GABBRO Boulder) End of Borehole at 9.10	(Large m	
						-			
Remarks Sample o U100 not	Type : f peat in botto attempted in	om on p Glacial	iston s Till du	ample from 6 e to high cobl	0.0m - 6 ble and	.9m boulder conte	Chiseling: From to time (m) (m) (hh:mm) 8.30 9.10 01:30	Water Strikes: Struck rising to time (m) (min) No Groundwater Encountered	Last Revised: 19/04/2012
								Casing: to (m) dia. (mm) 9.10 200	WWW causewaygeotech.com (c) Causeway Geotech Ltd

Cau	seway	Ge	ote	ch Ltd	Projec	at No. Projec Name	t New Port of Galway		Borehole No. BH07		
Method an Percussio	nd Equipmen	n t: I-8.40m	Dando	2000	Co-orc 13098	ls: 9.0mE	Client: Galway Harbour Com	pany	Sheet 1 of 1		
	Ū				22355	8.0mN	Engineer: Patrick		Scale: 1:50		
					Groun	d Level:	Dates: 11/03/2012		Driller: CC		
		Casing	Water		-4.70n	nCD			Logger: DC		
Depth (m)) Sample / Tes	t Depth (m)	Depth (m)	Field Reco	rds	(Thickness)	Stratum Description	.:al.	Water Strikes Installs		
1.00 1.00	SPT D	1.00	dry	N=0 N=0 (0,0,0,0,0)			wery son grey signify sandy SILT were medium shell content. Sand is fine coarse (organic odour noted)	atri to			
2.00 2.00	SPT D	2.00	dry	N=0 N=0 (0,0,0,0,0,0)		(2.60)					
3.00 3.00-3.90	D P		dry	800mm Recovery	y	-7.30 2.60	Very soft grey slightly sandy SILT w low to medium shell content. Sand to coarse	vith I is fine			
4.00 4.00	IVN 1 D			V:10kPa / VF	≹:2kPa	(4.00)					
5.00 5.00-5.90	D P		dry	800mm Recovery	ý	-					
6.00 6.00	IVN 1 D			V:12kPa / VF	R:2kPa	-					
6.60	D					-11.30 6.60	Soft brown poots SILT		X*X X X X * X X X X * X X X X		
7.00 7.00 7.00	SPT D B	7.00	dry	50/105mm 105mm (10,15,21	1,29)	-11.35 6.65	Dense grey subangular to subround to coarse GRAVEL with medium or content. Cobbles are subangular to subrounded	ded fine bbble o			
8.00 8.00	SPT D	8.00	dry	50/20mm ^{20mm} (16,18,50) 11/03/2012	dry	-12.90 8.20 -13.10 8.40	Strong grey medium grained META (Large Boulder) End of Borehole at 8.40	A-GABBRO m			
Remarks Hand var 2.6m = 7 U100 not	Type s: ne test results 7.3kPa, 3.0m s t attempted in	s: = 7.7kP i Glacial	a Till du	e to high cobl	ble and I	boulder conte	Chiseling: From to time (m) (m) (hh:mm)	Water Strikes: Struck rising to time (m) (m) (min) No Groundwater Encountered Casing: to (m) dia (mm)	Last Revised: 19/04/2012		

Cau	seway	Geo	oteo	ch Ltd	Projec 12-1	ct No. Projec 61 Name	ct : New Por	t of Galway		Boreho BH(le No.)8
Method ar	nd Equipment	:			Co-oro	ds:	Client: 0	Galway Harbour Com	pany	Sheet 1	of 1
Percussio	n boring 0.00-	8.80m	Dando	2000	13080 22310	18.0mE 16.0mN	Engineer: F	Patrick		Scale: 7	1:50
					Grour	nd Level:	Dates: 1	J. Tobin & Co. Ltd 11/03/2012		Driller:	
	1	Casing	Water		-7.80r	nCD				Logger:	DC Backfill/
Depth (m)	Sample / Test	Depth (m)	Depth (m)	Field Recor	ds	(Thickness)	Stratum Des			Water Strikes	Installs
1.00	D						with occasic with low she (organic odd	onal thin seams of sand Il content. Sand is fine our noted)	y silt		
2.00 2.00	SPT D	2.00	dry	N=0 N=0 (0,0,0,0,0,0)							
3.00 3.00-3.90	D P		dry	300mm Recovery							
4.00 4.00	IVN 1 D			V:7kPa / VR: [^]	IkPa	(8.00)					
5.00 5.00	SPT D	5.00	dry	N=0 N=0 (0,0,0,0,0,0)							
6.00 6.00	IVN 1 D			V:7kPa / VR:′	IkPa						
7.00 7.00	SPT D	7.00	dry	N=0 N=0 (0,0,0,0,0,0)			becomi	ng highly organic below	/ 7.20m		
7.60	D					-	-			XX X XX	
8.00 8.00	IVN 1 D			V:14kPa / VR	:2kPa	-15.80 8.00 -15.95 8.15	Spongy light Very stiff ligt	t brown fibrous PEAT ht grey gravelly sandy C	LAY	ala ala ala	
8.60 8.60	SPT D	8.00	dry	50/2mm 2ħħ/@͡ʑ/͡ʑØ,12	dry	-16.40 8.60 -16.60 8.80	with medium to coarse. C subrounded subangular	n cobble content. Sand Gravel is subangular to fine to coarse. Cobble to subrounded medium grained META	is fine s are GABBRO		
	Tupe						∖ (Large Bould	der) nd of Borehole at 8.80 r			
Remarks	: :			I		I	1	Chiseling: From to time	Water Strikes: Struck rising to time	Last Rev	vised:
U100 not	attempted in	Glacial	Till due	e to high cobb	le and	boulder conte	ent.	(m) (m) (hh:mm) 8.60 8.80 01:00	(m) (m) (min) No Groundwater Encountered	19/04/2	2012
									Casing: to (m) dia. (mm) 8.80 200	ISO 9002 NAVYOSINAN WWW causewayg (c) Causeway Gr	AGS eotech.com eotech.Ltd

APPENDIX C

Rotary cored borehole logs

Cau	sew	vay	Ge	oteo	ch Ltd	Proje 12-1	ct No. Proje 61 Name	ct : New Port of Galway	Borehole No. RC01
Method ar Percussio	nd Equi	ipment g 0.00-	t: 3.75m	Dando	2000	Co-or 13062	ds: 20.0mE	Client: Galway Harbour Company	Sheet 1 of 1
Rotary dril	ling 3.7	- 75-6.80	m Sym	metrix	Drilling	22441	I4.0mN	Engineer: Patrick	Scale: 1:50
Rotary cor	ing 6.8	0-9.80	m Com	iacchio	205	Grour	nd Level:	J. Tobin & Co. Ltd	Driller: CC
						-1.20	mCD	Dates. 13/03/2012	Logger: DC
Depth (m)	Sample	e / Test	Casing Depth (m)	Water Depth (m)	Field Reco	rds	Level Dept (Thickness)	Stratum Description	Legend & Backfill/ Water Strikes Installs
0.00	D							Very soft grey sandy SILT/silty fine SAND with medium shell content. Sand is fine (Organic odour noted) Shells mainly oyster shells	X X X X X X X X X
							(2.60)		
2.00	U						-3.80 2.60		x x x x x x x x x x x x x x x x x x x
							(0.40)	Layer of Oyster Shells in a matrix of grey organic silt	\times \times \times \times \times
3.00	В						-4.20 3.00	Stiff grey gravelly sandy CLAY with medium cobble content. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse. Cobbles are subangular to subrounded	
							(2.30)		
							-6.50 5.30	Very strong grey, pink and dark grey speckled coarse grained GRANITE. Fresh near vertical fractures open from 6.0m - 6.3m	
6.80									
8.30	100	93	84	4	8.30		(4.50)		
	100	94	86	3					
	TCR	SCR	RQD	FI	13/03/2012 9.80	dry	-11.00 9.80	End of Borehole at 9.80 m	+++++
Remarks First atter the hole (Symmetr of the bea	: mpt aba sheare ix cased drock ca	andone d off). d down ausing	d on br the ho the bo	oken ro le rotar rehole f	ock at 6.3m c y from 5.3m to collapse.	lue to lo - 6.8m	osing corebit due to broke	down n nature $ \begin{array}{c} Chiseling: From to time (m) (hh:m) (m) (hh:m) (m) (m), (m) (m) (m), (m) (m) (m), (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)$	Last Revised: 20/03/2012
									(c) Causeway Geotech Ltd

RC01

Cau	seway	Ge	oteo	ch Ltd	Projec 12-1	ct No. Projec 61 Name	t : New Pol	t of Galway		Borehol RCC	e No.)2
Method ar Percussion	nd Equipment n boring 0.00-	t: ·9.70m	Dando	2000	Co-or 13048	i ds: 33.0mE	Client: 0	Galway Harbour Com	pany	Sheet 1	of 2
Rotary dril	ling 9.70-11.1	0m Sy 40m C	mmetri	x Drilling	22395	54.0mN	Engineer:	Patrick		Scale: 1	:50
TODATY COL	ing 11.10-14.	40111-0	Unacci	10 203	Grour	nd Level:	Dates:	12/03/2012		Driller:	:С
	1	Casing	Water		-2.20r	nCD				Logger:	C Backfill/
Depth (m)	Sample / Test	Depth (m)	Depth (m)	Field Reco	rds	(Thickness)	Stratum Des	scription	SAND	Water Strikes	Installs
1.00	D					(2.80)	(Organic od	our noted)	s fine	×××× ××××× ××××× ××××× ××××× ××××× ×××××	
2.00	D									×××× ××××× ××××× ××××× ××××× ×××× ××××× ××××	
3.00	D					-5.00 2.80	Very soft gr with slight s	ey slightly organic sand hell content. Sand is fii	y CLAY ie	2 X X X X 0 0	
4.00	D									alia <u>andre</u> alia <u>alia alia alia <u>alia alia alia <u>alia alia </u></u></u>	
5.00	D					(6.20)				Norman Ship Norman Ship	
6.00	D					(8.20)				Ale	
7.00	D										
8.00	D										
						-11.20 9.00	Very stiff gro medium col content. Sa is subround	ey gravelly sandy CLAY oble content and low bo nd is fine to coarse. G ed to subangular fine to	with ulder avel		
						(1.40)	coarse. Co subrounded	bbles and boulders are to subangular of meta-	gabbro		
Remarks Could not	Tγpe : t seal off wate	er with s	shell an	d auger or sy	/mmetri	x casings]	Continued next sheet Chiseling: From to time (m) (m) (hh:mm) 9.50 9.70 01:00	Water Strikes: Struck rising to time (m) (min) No Groundwater Encountered	Last Rev 20/03/2	/ised: 012
								L	Casing: to (m) dia. (mm) 9.70 200	WWW.causeway.ge	AGS eotech.com otech Ltd

Cau	sew	/ay	Ge	oteo	ch Ltd	Proje 12-1	ct No. Proje 61 Nam	t New Port of Galway		Boreho RC	le No. 0 2
Method ar Percussio	nd Equ n boring	ipment g 0.00-	t: 9.70m	Dando	2000	Co-or 13048	ds: 33.0mE	Client: Galway Harbour (Company	Sheet 2	2 of 2
Rotary dril	ling 9.7 ing 11	′0-11.1 10-14	0m Syl	mmetri omacci	x Drilling	22395	54.0mN	Engineer: Patrick	td	Scale:	1:50
Notary cor	ing in.	10-14.	40111 0	omacci	10 200	Grour	nd Level: mCD	Dates: 12/03/2012	tu	Logger:	
Depth (m)	Sampl	e / Test	Casing Depth	Water Depth	Field Reco	rds	Level Dept	Stratum Description		Legend &	Backfill/
,			(m)	(m)			(Thickness)	and granite		Water Strike	s Installs
							-12.60 10.40				
								Very strong grey with dark gre speckles coarse grained GRA	y and pink NITE.	+ + + + + + + + + + + + + + + + + + + +	
								Core badly broken from 11.10	m - 12.50m	• + + + + + + + + +	
11.10		_	-	_						+ + + +	
11.50	0	0	0	0	11.50			-		+ + + +	
	86	0	0	0						+++++	
12 10					12 10					+++++	
12.10	00	20	20	40	12.10		(4.00)	-			
10	92	30	30	0	10.75		(4.00)			* * * * *	
12.70					12.70			-		* * * *	
	100	67	67	5						+++++	
13.40					13.40					+ + + + + + + + + + + + + + + + + + + +	
										* * * * *	
	93	81	76	3						+ + + + + + + + + + + + + + + + + + + +	
					12/03/2012	drv		- -		* * * * *	
					14.40	ary	-16.60 14.40	End of Borehole at 1	4.40 m		
								- - -			
								- -			
								-			
								- - -			
								-			
								-			
								-			
								-			
								-			
								1			
	TCR	SCR	RQD	FI				Chicaling	Water Strikes		
Remarks	:	ff wata	r with a	hell on	id auger or o	mmotri	v casinge	From to tim (m) (m) (hh	e Struck rising to time (m) (m) (min)	Last Re	vised:
	. əca i 0	n wale	T VVILLE S	ancii di	auger OFS)	mnetfi	n casings		No Groundwater Encountered	20/03/.	2012
									Casing:	ISO 9002	AGS
									to (m) dia. (mm) 9.70 200	www.causeway	geotech.com
										(c) Causeway G	eotech Ltd

RC02

Caus	seway	Ge	oteo	ch Ltd	Proje 12-1	ct No. Pro 161 Nai	oject me:	t New Por	t of Galway		Borehole No. RC03	
Method an Percussior	nd Equipment	: 9.40m	Dando	2000	Co-or	ds: 38.0mE		Client: C	Galway Harbour Com	bany	Sheet 1 of 2	
Rotary drill	ling 9.40-10.7	0m Syi	mmetri	x Drilling	22363	30.0mN	ľ	Engineer: F	Patrick		Scale: 1:50	_
TODALY COL	ing 10.70-13.		omacul	10 200	Grou	nd Level:		Dates: 1	2/03/2012		Driller: CC	
		Casing	Water		-4.50	mCD					Logger: DC	
Depth (m)	Sample / Test	Depth (m)	Depth (m)	Field Reco	rds	(Thicknes	eptn ss)	Stratum Des	cription		Water Strikes Insta	lls
).00 D			(1.10) -5.60 1.10		with medium shell content. Sand is fine (Organic Odour) Very soft grey slightly organic sandy clayey SILT/silty CLAY with low cobble content. Sand is fine. Cobbles are subangular to subrounded		/ ble				
						(7.50)						
						-13.10 8.	.60	Firm brown	sub-amorphous PEAT		114 114 114 114 114 114 114 114 114	
						-13.23 8.	_ c י. 	Grey silty sa	ndy subangular to subr	ounded		
							-	coarse	E GRAVEL, SANG IS TIP		× × × × ×	
						(1.35)						
	Туре						-		Continued next sheet			
Remarks: Could not	: t seal off water	r with s	shell an	d auger or sy	vmmetri	ix casing.			Chiseling:Fromtotime(m)(m)(hh:mm)8.759.4001:00	Water Strikes: Struck rising to time (m) (m) (min) No Groundwater Encountered	Last Revised: 20/03/2012	:
										Casing: to (m) dia. (mm) 9.40 200	(c) Causeway Geotech Ltd	5

Causeway Geotech Ltd					ch Ltd	Proje 12-1	ect No. Project 161 Name	New Port of Galway	Borehol RCC	le No.)3	
lethod ar	nd Equ n borine	ipmen a 0.00-	t: 9.40m	Dando	2000	Co-or	ds: 88.0mE	Client: Galway Harbour Company	Sheet 2	of 2	
Rotary dril Rotary cor	ling 9.4 ing 10.	40-10.7 70-13.	'0m Sy 10m C	mmetri: omaccl	x Drilling nio 205	22363	30.0mN	Engineer: Patrick J. Tobin & Co. Ltd	Scale: 1:50		
						Grou	nd Level:	Dates: 12/03/2012	Logger:		
epth (m)	epth (m) Sample / Test Depth Depth Field Re			Field Reco	rds	Level Depth	Stratum Description	Legend & Water Strikes	Backfill/		
		(m) (m)					-14.60 10.10	Grey silty sandy subangular to subrounded fine to coarse GRAVEL. Sand is fine to	<pre>{C(18:407) + + + + + + + + + +</pre>		
).70								coarse Strong grey with pink and white speckles coarse grained GRANITE	· · · · · · · · · · · · · · · · · · ·		
	83	64	36	0			(2.90)		· · · · · · · · · · · · · · · · · · ·		
1.90	81	81	62	5	11.90				* * * * * * * * * * * * * * * * * * * *		
					12/03/2012	dry	-17.50 13.00	End of Borehole at 13.10 m	++++		
	TCR	SCR	RQD	FI				Chicoline: Mater Chillerer			
Remarks Could not	: t seal o	ff wate	r with s	shell an	d auger or sy	/mmetr	ix casing.	Griseling: Water Strikes: From to time (m) (m) (hh:mm) Struck rising to time (m) (m) (min) No Groundwater Encountered	Last Rev 20/03/2	v ised : 2012	
								Casing: to (m) dia. (mm) 9.40 200	N. Ca Fe ISO 9002 Levres Jave www.causewayg (c) Causeway Ge	AGS eotech.com	

RC03

APPENDIX D

Dynamic probe logs
Cause	way Ge	otech Ltd	Project 12-16	No. Project Name:	New P	ort of Galway				Dynamic Probe No. DP01
Method and E	quipment:		Co-ords	S:	Client:	Galway Har	bour Comp	any		Sheet 1 of 1
Dynamic Prob	ing to 2.70m by	Dando Terrier	224564	.0me .0mN	Enginee	r: Patrick				Scale: 1:50
			Ground	l Level:	Dates:	13/03/2012				Operator:
			-0.30m			Blow	Count			Logger: DC
Depth (m)	Level (mCD)	Blows per 100)mm	e	5 	10	15	20	25	Torque (Nm)
0.00	0.00		0							-
- 0.50	-0.80	<u> </u>	_0_							-
	-1.30		0							-
	1 00		<u>o</u> o							-
- 1.50 - -	-1.80	<u>4</u> <u>8</u> <u>10</u>								-
2.00	-2.30	<u>- 15</u> 15	12							-
- 2.50	-2.80	<u>16</u>	1816							-
-		<u>20</u> <u>22</u> <u>30</u>								
-										-
-										-
-										-
-										-
-										
-										-
 										-
-										-
-										-
-										-
-										-
-										-
-										-
-										-
-										-
-										-
-										-
-										
-										-
-										-
-										
Remarks:								Test Method	:	Last Revised:
Probe fell une hammer to 1.	der its own weigł .4m.	nt plus			Г	Cono Arrel-		DPSH-B		26/03/2012
						90degree		63.50		
						Cone Diameter: 50mm		Fall Height: 750mm		Freedom (1997)

Cause	way Ge	otech Ltd	Project N 12-161	No. Projec Name:	t New F	Port c	of Galway				Dynamic Probe No. DP02
Method and E	quipment:		Co-ords	:	Client:	(Galway Hart	our Comp	any		Sheet 1 of 1
Dynamic Prob	ing to 2.70m by	Dando Terrier	130452. 224414.	0mE 0mN	Enginee	er: I	Patrick J. Tobin & 0	Co. Ltd			Scale: 1:50
			Ground -3.30m0	Level: CD	Dates:		13/03/2012				Logger: DC
Depth (m)	Level (mCD)	Blows per 100) Dmm		5	10	Blow C	ount	20	25	Torque (Nm)
0.00	-3.30	<u> </u>			+						
0.50	-3.80		<u> </u>								-
1.00	-4.30		<u>0</u>								-
1.50	-4.80		<u> </u>								
- 2.00	-5.30		<u>0</u>								- - - -
2.50	-5.80		<u> </u>								
-											-
- - -											
											-
- - - -											-
-											
-											- - -
-											- - - -
-											
-											
-											
-											-
-											- - -
-											
-											
Remarks:	ler its own woich	nt plus							Test Metho DPSH-B	od:	Last Revised:
hammer to 2.	4m.	ir hina				Con 90de	e Angle egree		Hammer M 63.50	lass:	
							ne Diameter:		Fall Heigh 750mm	t:	AGS

Cause	way Ge	otech Ltd	Project 12-16	No. Project 1 Name:	t New I	Port c	of Galway				Dynamic Probe No. DP03
Method and E	quipment:		Co-ords	5:	Client:	(Galway Hart	our Comp	any		Sheet 1 of 1
Dynamic Prob	ing to 3.90m by	Dando Terrier	130792 224411	.0mE .0mN	Enginee	er: I	Patrick J. Tobin & 0	Co. Ltd			Scale: 1:50
			Ground -0.90m	l Level: CD	Dates:		13/03/2012				Logger: DC
Depth (m)	Level (mCD)	Blows per 10)mm		5	10	Blow C	ount	20	25	Torque (Nm)
0.00	-0.90	<u> </u>			+						
0.50	-1.40		0								- - - -
- 1.00 -	-1.90		0								-
- 1.50	-2.40		0								- - - -
- 2.00	-2.90		<u>0</u>								-
2.50	-3.40		<u> </u>								-
- 3.00 -	-3.90	<u>6</u> <u>8</u> <u>6</u>	<u>3</u> _4_								- - - -
3.50	-4.40	<u>10</u> <u>13</u> <u>15</u>	<u> </u>								
- 		_	30								- - -
-											- - - -
- - - -											-
-											-
-											-
											- - - -
- - -											-
-											
-											-
-											
- - -											
-											-
Remarks: Probe fell und	der its own weigh	nt plus							Test Metho DPSH-B	od:	Last Revised: 26/03/2012
hammer to 2.	.7m.					Con 90de	e Angle egree		Hammer M 63.50	ass:	
						Con 50m	le Diameter: າm		Fall Height 750mm	:	

Cause	way Ge	otech Ltd	Project	No. Projec 1 Name	et New F :	⊃ort c	of Galway				Dynamic Probe No. DP04
Method and E	quipment:		Co-ords	3:	Client:	(Galway Hark	our Comp	any		Sheet 1 of 1
Dynamic Prob	ing to 3.50m by	Dando Terrier	130911 224412	.0mE .0mN	Enginee	er:	Patrick	Co. I td			Scale: 1:50
			Ground	Level:	Dates:		13/03/2012				Operator:
			-0.80m				Blow C	ount			
Deptn (m)	_0.80	Blows per 100	mm		5	10) 1	5	20	25	Torque (Nm)
0.50	-1.30		0								-
- - - 100	-1.80		0								- - -
-	-1.80		0								-
1.50	-2.30		<u> </u>								-
- 2.00	-2.80		<u> </u>								-
2.50	-3.30	<u>3</u> <u>4</u> <u>-</u>	22								
3.00	-3.80	<u> </u>	<u>6</u> 8								-
- 3.50	-4.30		14								- - -
- - - 											- - - -
											-
-											-
-											-
											-
											- -
-											-
											-
											-
_											
- - -											-
-											-
-											-
-											
Remarks:	l	nt nlus		1					Test Metho DPSH-B	d:	Last Revised:
hammer to 1	.5m.	יי אומס				Con 90de	e Angle egree		Hammer M 63.50	ass:	
						Cor 50n	e Diameter:		Fall Height 750mm	:	ISO 9002

Cause	way Ge	otech Ltd	Project 12-16	No. Projec 1 Name	t New F	Port of Ga	alway					Dynamic Probe No. DP05
Method and E	quipment:		Co-ords	5:	Client:	Galw	/ay Harl	oour Comp	any			Sheet 1 of 1
Dynamic Prob	ing to 4.90m by	Dando Terrier	130348 224263	.0mE .0mN	Enginee	r: Patri	ck					Scale: 1:50
			Ground	Level:	Dates:	J. I 13/0:	obin & 0	Co. Ltd				Operator:
			0.00m0			10.0	Blow C	<u>`ount</u>				Logger: DC
Depth (m)	Level (mCD)	Blows per 10)mm		5	10		15 15	20	25		Torque (Nm)
- 0.00	0.00		0								-	
- 0.50	-0.50	<u> </u>	<u> </u>								-	
1.00 	-1.00	<u> </u>	<u> </u>								-	
- 1.50	-1.50		0									
2.00	-2.00		0								- - - -	
- 2.50	-2.50		0									
- 	-3.00		0									
- - 3.50 -	-3.50	$\begin{vmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	23_								-	
- - - 4.00	-4.00	<u> </u>	<u>3_5_</u>								- 	
- - - 4.50	-4.50	<u></u>	<u>11</u> _12									
- - 			<u>18</u> 30								-	
-												
- - 												
-											-	
-											-	
-											-	
-												
											-	
- - -											- - -	
-											-	
-											-	
-											-	
Remarks:	lor ito ouro				· · · · · · · · · · · · · · · · · · ·				Test Meth DPSH-B	od:		Last Revised:
hammer to 2.	aer its own weigr 3m.	n pius				Cone An 90degree	gle e		Hammer I 63.50	Vlass:		
						Cone Dia 50mm	ameter:		Fall Heigh 750mm	ıt:		ISO 9002

Cause	way Ge	otech Ltd	Project 12-16	No. Projec Name	ct New F ::	ort of Galway				Dynamic Probe No. DP06
Method and E	quipment:		Co-ord:	s:	Client:	Galway Ha	arbour Con	npany		Sheet 1 of 1
Dynamic Prob	ing to 8.40m by	Dando Terrier	130450 224268).0mE 3.0mN	Enginee	r: Patrick	Co. Ltd			Scale: 1:50
			Ground	d Level:	Dates:	13/03/201	2			Operator:
Depth (m)	Level (mCD)	Blows per 100)mm		5	Blow	Count	20	25	Torque (Nm)
- 0.00	-1.10	0 0			+					
0.50	-1.60		0							- - - - -
- - - - -	-2.10		00							- -
- - 1.50	-2.60		<u>0</u>							-
- 2.00	-3.10		<u>0</u>							- -
2.50	-3.60		0							
- 3.00	-4.10		<u>o</u>							- -
- 3.50	-4.60		<u>00</u>							
- - 4.00	-5.10		<u>0</u>							-
4.50	-5.60		<u> </u>	E						-
5.00 	-6.10		<u> </u>	E						-
5.50	-6.60		<u> </u>							- - - -
- - 6.00	-7.10		<u> </u>	E						-
6.50	-7.60	23_	22							
- 7.00 -	-8.10		<u>3</u> 7							-
7.50	-8.60	<u>10</u> <u>12</u> <u>15</u>	<u>5</u>							-
- 8.00 - -	-9.10	<u>15</u> <u>16</u> <u>18</u>	<u>15</u> 21 20							
-			<u> 3U </u>							
-										
Remarks: Probe fell und	der its own weigt	nt plus						Test Met DPSH-B	thod:	Last Revised: 26/03/2012
hammer to 4.	2m.					Cone Angle 90degree		Hammer 63.50	Mass:	
						Cone Diameter 50mm	r:	Fall Heig 750mm	ght:	

Cause	way Ge	otech Ltd	Project 12-16	No. Projec Name:	t New F	Port o	f Galway					Dynamic Probe No. DP07
Method and E	quipment:		Co-ord:	5:	Client:	G	Salway Harl	bour Com	bany			Sheet 1 of 1
Dynamic Prob	ing to 4.40m by	Dando Terrier	130890 224265	0.0mE 5.0mN	Enginee	er: F	Patrick	Co. I td				Scale: 1:50
			Ground -1.50m	i Level : CD	Dates:	1	3/03/2012					Operator: Logger: DC
Depth (m)	Level (mCD)	Blows per 10	Dmm		5	10	Blow C	Count 15	20	2	5	Torque (Nm)
0.00	-1.50	<u> </u>						+				
0.50	-2.00		00									- - -
- - - 1.00	-2.50		0									- -
 1.50	-3.00		<u>0</u>									-
- - - 2.00	-3.50		<u>o</u>									- -
- 2.50	-4.00		0									-
- - - 3.00 -	-4.50	<u>3</u> 34	22									-
- - 3.50	-5.00		<u>7</u> <u>12</u>									
- - 4.00 -	-5.50	<u></u> <u></u>	<u>15</u> _16_							_		- - - - -
-			<u>27</u> <u>30</u>							_		
· - 												-
-												-
- - 												- -
- - - -												-
- - 												-
-												-
- 												-
-												-
- - - -												
- - - -												-
-												-
Remarks: Probe fell und	der its own weigh	nt plus		-					Test Me DPSH-	ethod: B		Last Revised: 26/03/2012
nammer to 2.	om.					Cone 90de	e Angle gree		Hamme 63.50	er Mass	:	ISO 9002
						Con 50m	e Diameter: m		Fall Hei 750mm	ight:		terrorient for the second s

Cause	way Ge	otech Ltd	Project 12-16	No. Projec 1	ct New F	Port of	Galway				Dynamic Probe No. DP08
Method and E	quipment:		Co-ords	3:	Client:	G	alway Hart	oour Comp	any		Sheet 1 of 1
Dynamic Prob	ing to 5.10m by I	Dando Terrier	130458 224113	.0mE .0mN	Enginee	er: P	atrick				Scale: 1:50
			Ground	Level:	Dates:	J1	. Tobin & (Co. Ltd			Operator:
			-1.10m	CD	Dates.		5/03/2012				Logger: DC
Depth (m)	Level (mCD)	Blows per 100)mm		5	10		50UNT 15	20	25	Torque (Nm)
- 0.00	-1.10		0								-
0.50	-1.60	<u> </u>	<u> </u>								-
- 1.00	-2.10		<u>0</u>								-
1.50	-2.60		0								-
2.00	-3.10		0	F							- -
2.50	-3.60		1								
- 3.00	-4.10		<u>1 1 </u>								
3.50	-4.60		1								
- - 4.00	-5.10	<u>2</u> 2 2	21_								- - - -
4.50	-5.60		23_								
5.00	-6.10		<u>10</u> 15								- - - -
-											- - - -
-											- -
-											- - - -
- - -											- -
- - -											- - - -
- - 											
-											
											- - -
-											
Remarks:	der its own weigh	t plus		I					Test Method: DPSH-B		Last Revised: 26/03/2012
hammer to 1.	6m.					Cone 90deg	Angle gree		Hammer Mas 63.50	s:	
						Cone 50mr	Diameter:		Fall Height: 750mm		AGS

Cause	way Ge	otech Ltd	Project 12-16	No. Projec Name	ct New F :	Port of Ga	alway					Dynamic Probe No. DP09
Method and E	quipment:		Co-ord	s:	Client:	Galv	vay Har	bour Com	ipany			Sheet 1 of 1
Dynamic Prob	ing to 7.10m by	Dando Terrier	130570 224086	0.0mE 6.0mN	Enginee	r: Patri	ick					Scale: 1:50
			Ground	d Level:	Dates:	J. T 13/0	obin &	Co. Ltd				Operator:
			-1.90m				Blow	Count				Logger: DC
Depth (m)	Level (mCD)	Blows per 100)mm		5	10		15	20		25 	Torque (Nm)
- 0.00 - -	-1.90		0									-
0.50	-2.40											-
1.00	-2.90		<u>0</u>									- -
 1.50	-3.40		0									-
2 00	-3 90		<u>0</u>									-
 	-5.50		0									-
2.50	-4.40		_0_									
- - 3.00 -	-4.90		<u>0</u>									
- 3.50	-5.40		0									
- 4.00 -	-5.90	<u> </u>	<u>0 </u>									-
- 4.50	-6.40		<u>0 0 </u>									- - -
5.00	-6.90		<u>12</u>									- - - -
5.50	-7.40	<u>5</u> 67	44_									- - - -
- 6.00 -	-7.90		75_									- - - -
6.50	-8.40	<u></u>	99_				•					- - - -
- - - 7.00	-8.90	<u></u>	<u>17</u> _21									
-												-
-												
-												
-												
-												
-												-
-												-
Remarks:	der its own weigt	nt plus							Test	Method: H-B		Last Revised: 26/03/2012
hammer to 4.	5m.					Cone Ar 90deare	i gle e		Ham 63.5	imer Mas	s:	
						Cone Di	ameter:		Fall	Height: nm		ISO 9002
						John			.00			

Cause	way Ge	otech Ltd	Project I 12-16	No. Projec 1 Name:	et New F :	Port of	Galway				Dynamic Probe No. DP10
Method and E	quipment:		Co-ords		Client:	G	alway Harb	our Comp	any		Sheet 1 of 1
Dynamic Prob	ing to 5.30m by I	Dando Terrier	130983 224091	.0mE .0mN	Enginee	r: Pa	atrick				Scale: 1:50
			Ground	Level:	Dates	J. 13	Tobin & (Co. Ltd			Operator:
			-1.90m	CD	Dates.						Logger: DC
Depth (m)	Level (mCD)	Blows per 100)mm		5	10	Blow C	50unt 5	20	25	Torque (Nm)
- 0.00	-1.90		0								-
0.50	-2.40	<u> </u>	<u> </u>								-
- - 1.00	-2.90	<u> </u>	<u>0</u>								-
1.50	-3.40		0								
2.00	-3.90		0								- - - -
2.50	-4.40		0								
- - 3.00	-4.90	$\begin{vmatrix} 3 \\ -4 \\ -3 \end{vmatrix}$	22								
3.50	-5.40		<u>44_</u>								
- 4.00 -	-5.90	_ <u>5</u> 6	<u>4</u> 5_								
4.50	-6.40	<u>6</u> 76	<u>67_</u>								-
- 5.00	-6.90		<u>67_</u>								
-			23								-
											- - - -
											- - -
-											-
-											- - -
-											
-											
Remarks:	l der its own weigh	it plus		<u> </u>					Test Method DPSH-B	:	Last Revised: 26/03/2012
hammer to 2.	5m.					Cone 90deg	Angle ree		Hammer Ma 63.50	ss:	
						Cone 50mn	Diameter:		Fall Height: 750mm		

Cause	way Ge	otech Ltd	Project 12-16	No. Projec Name:	et New P	ort of Galway				Dynamic Probe No. DP11
Method and E	quipment:		Co-ords	s:	Client:	Galway Ha	arbour Com	npany		Sheet 1 of 1
Dynamic Prob	ing to 7.50m by	Dando Terrier	223948	8.0mE 8.0mN	Enginee	r: Patrick				Scale: 1:50
			Ground	d Level:	Dates:	14/03/201	2			Operator:
			-2.70m			Blow	/ Count			Logger: DC
Depth (m)	Level (mCD)	Blows per 100)mm		5	10	15	20	25	Torque (Nm)
- 0.00	2.70		0							-
- 0.50	-3.20	<u> </u>								-
- 1.00	-3.70		<u>0</u>							-
1.50	-4.20		0							-
-			<u> </u>							-
_ 2.00	-4.70		_ <u>_</u>							
2.50	-5.20									- - -
3.00	-5.70		0							-
-			<u> </u>							-
- 3.50 	-6.20		_ <u>_</u>							-
4.00	-6.70		<u> </u>							-
4.50	-7.20		0							-
- - - - 5.00	-7.70		0							
- - -	8.20		<u>o</u> 0							-
- 5.50	-8.20		3							-
- 6.00	-8.70	<u>3</u> 23								-
6.50	-9.20		56_							-
- - - 700	-9 70		9							-
-	-5.70	<u><u>11</u> <u>12</u> <u>15</u></u>	19							-
7.50	-10.20	30	22							-
-										
-										
-										-
- - 										
- - -										-
-										
-										-
Remarks: Probe fell une	der its own weigh	nt plus						Test Met DPSH-B	nod:	Last Revised: 05/04/2012
hammer to 5	.5m.					Cone Angle 90degree		Hammer 63.50	Mass:	
					-	Cone Diamete	r:	Fall Heig	ht:	ISO 9002
						50mm		750mm		

Cause	way Ge	otech Ltd	Project I 12-16	No. Projec 1 Name:	t New F	Port c	of Galway				Dynamic Probe No. DP12
Method and E	quipment:		Co-ords	S: От Г	Client:	(Galway Hart	oour Comp	any		Sheet 1 of 1
Dynamic Prob	ing to 5.60m by I	Dando Terrier	223806	.0m⊨ .0mN	Enginee	er: F	Patrick				Scale: 1:50
			Ground	l Level:	Dates:		J. Tobin & C	Co. Ltd			Operator:
			-3.20m				Blow C	Count			Logger: DC
Depth (m)	Level (mCD)	Blows per 100	Omm		5	10) 1	15	20	25	Torque (Nm)
- 0.00	-3.20		0								-
- 0.50 -	-3.70		_0_								-
1.00	-4.20		<u>0</u>								
 1.50	-4.70		0								- - - -
2.00	-5.20		0								
- 2.50	-5.70		0								
- - - 3.00	-6.20		0								
- 3.50	-6.70		0								
- 4.00	-7.20		0								
4.50	-7.70	<u>5</u> 65	3								
- 5.00	-8.20		<u>6</u> 6				_				
5.50	-8.70	<u></u>	<u>15</u> 19								
- - 											
-											
-											
-											- - -
= = =											
-											
-											-
											-
-											-
Remarks: Probe fell und	ler its own weigt	nt plus		<u> </u>					Test Metho DPSH-B	od:	Last Revised: 05/04/2012
hammer to 3.	8m.					Con 90de	e Angle egree		Hammer M 63.50	ass:	
						Con 50m	e Diameter:		Fall Height 750mm	:	AGD

Cause	way Ge	otech Ltd	Project I 12-16 ⁻	No. Project Name:	t New P	ort of G	alway					Dynamic Probe No. DP13
Method and E	quipment:		Co-ords	: Отт Г	Client:	Gal	way Harl	bour Com	any			Sheet 1 of 2
Dynamic Prob	ing to 12.10m by	/ Dando Terrier	223688	.ome .omN	Engineer	: Patr	ick					Scale: 1:50
			Ground	Level:	Dates:	14/C	3/2012					Operator:
Describe (see)			-3.80m				Blow C	Count				
Depth (m)	-3.80	Blows per 100)mm		5	10		15	20	2	:5	l orque (Nm)
- 0.00	0.00		0									-
- 0.50	-4.30	<u> </u>										-
- 1.00	-4.80		<u> </u>									-
- 150	-5.30		<u> </u>									-
-	0.00		0									-
2.00	-5.80											-
- 2.50	-6.30	0	0									-
-			0									-
- 3.00 -	-6.80	<u> </u>										-
3.50	-7.30		0									-
- 400	-7 80		0									-
 	-7.00		0									-
4.50	-8.30											-
 5.00	-8.80	0 -	<u>0</u>									-
-			00									-
- 5.50 -	-9.30	<u> </u>										-
- - 6.00	-9.80	<u> </u>	<u>0 0 </u>									-
- 650	-10 30		<u>o</u>									-
- 0.00	-10.00		0									-
- 7.00	-10.80											-
- 7.50	-11.30	0	0									-
-			0									-
- 8.00 -	-11.80											-
8.50	-12.30		0									-
0.00	12.80		<u>1</u> 1									-
9.00 	-12.80		1									-
9.50	-13.30		<u> </u>									-
-			<u>1</u>									-
Remarks:	L			l					Те	st Method:		Last Revised:
Probe fell und hammer to 8	der its own weigł .5m.	nt plus			Г	Cone A:	nale		DF	PSH-B		05/04/2012
						90degre	e		63	.50	•	
						Cone D 50mm	iameter:		Fa 75	i ll Height: i0mm		
									1			• • • • • • • • • • • • • • • • • • •

Cause	way Ge	otech Ltd	Project No. 12-161	Project Name:	: New F	Port of		Dynamic Probe No. DP13			
Method and E	quipment:		Co-ords:	_	Client:	G	alway Harb	our Comp	any		Sheet 2 of 2
Dynamic Prob	ing to 12.10m by	/ Dando Terrier	130737.0n 223688.0n	nE nN	Enginee	r: P	atrick	Da 144			Scale: 1:50
			Ground Le	evel:	Dates	1.	4/03/2012	Jo. Ltd			Operator:
			-3.80mCD	1			Blow	ount			Logger: DC
Depth (m)	Level (mCD)	Blows per 100	0mm		5	10	ыоw С 1	5	20	25	Torque (Nm)
- 10.00	-13.80		1,								-
10.50	-14.30	2_3_2									-
11.00	-14.80	3 3 0	23_								-
- 11.50	-15.30		<u>4</u>								-
-			<u>12</u> 15								- -
12.00	-15.80	<u>21</u> <u>24</u> <u>30</u>									
-											
-											-
-											-
-											
-											-
											-
-											-
-											-
-											-
-											-
-											-
-											-
-											-
											-
-											
+ - 											
-											
-											
-											-
-											-
-											-
-											
Remarks:									Test Metho DPSH-B	d:	Last Revised:
hammer to 8.	5m.	n pius			[Cone 90de	Angle		Hammer Ma	ass:	05/04/2012
					90degree Cone Diameter:			Fall Height:	ISO 9002		
						50mi	m		7501110		

Cause	Causeway Geotech Ltd Project No. 12-161 Project Name:						ct New Port of Galway ::						
Method and E	quipment:		Co-ord:	s:	Client:	Galway Ha	arbour Cor	npany		Sheet 1 of 1			
Dynamic Prob	ing to 8.60m by	Dando Terrier	130360 223951).0mE I.0mN	Enginee	r: Patrick	Coltd			Scale: 1:50			
			Ground -2.00m	d Level: CD	Dates:	14/03/201	2			Logger: DC			
Depth (m)	Level (mCD)	Blows per 10) mm		5	Blow 10	Count	20	25	Torque (Nm)			
0.00	-2.00			1	<u>. </u>								
0.50	-2.50		00_										
- 	-3.00		0							- 			
- - - 1.50	-3.50		0							- - - -			
- 2.00	-4.00		0							- 			
- - 2.50	-4.50		0										
- 3.00	-5.00		0										
- 3.50	-5.50		0										
- 4.00	-6.00		<u>0</u>							-			
- - 4.50 -	-6.50		<u>0</u>							- - -			
- - - 5.00	-7.00		<u>0 0 </u>							- 			
- - 5.50 -	-7.50		<u>1</u>							-			
- - 6.00	-8.00	2_2_3	2 2										
6.50	-8.50	_45_4_	<u>3</u> _4_										
- 7.00	-9.00	68	<u> </u>							-			
7.50	-9.50	<u>8</u> <u>6</u> <u>8</u>	<u>9</u>			•							
- 	-10.00	<u>12</u>	<u>8</u>										
- - 8.50 -	-10.50	<u>27</u> <u>30</u>	22										
-													
-													
Remarks:								Test Me	thod:	Last Revised:			
Probe fell une hammer to 5	der its own weigh 1m.	nt plus			[Cone Angle		DPSH-E	s r Mass:	05/04/2012			
						Cone Diameter	r:	Fall Hei 750mm	ght:	ISO 9002			

Causeway Geotech Ltd Project No. 12-161 Project Name:						t New Port of Galway :						Dynamic Probe No. DP15
Method and E	quipment:		Co-ords	s:	Client:	Galv	way Har	bour Com	ipany			Sheet 1 of 1
Dynamic Prob	ing to 7.30m by	Dando Terrier	223808	3.0mE 3.0mN	Enginee	r: Patr	ick	<u> </u>				Scale: 1:50
			Ground	d Level:	Dates:	J. I 14/0	05/2012	Co. Ltd				Operator:
			-2.30m				Blow	Count				Logger: DC
Depth (m)	Level (mCD)	Blows per 100)mm		5	10		15	20		25 · · · · · · · · · · · · · · · · · · ·	Torque (Nm)
- 0.00	-2.30		0									-
0.50	-2.80											-
- 1.00	-3.30		0									- - - -
1.50	-3.80		0									-
- 2.00	-4.30		0									
2.50	-4.80		0									
- 3.00	-5.30		00_									
3.50	-5.80		0									
4.00 	-6.30		<u>0</u>									- - - -
4.50	-6.80		0									-
5.00	-7.30		00_									- -
5.50	-7.80		0									
- - - 6.00	-8.30		1									-
6.50	-8.80		67				-					-
- 7.00	-9.30	$\begin{array}{c c} \underline{15} \\ \underline{21} \\ \underline{21} \\ \underline{23} \end{array}$	<u>18</u>									- -
-		25	30									
- - -												-
-												
-												
-												-
- - - -												
Remarks:	ler ite own woich	nt plus				'			Test M	ethod: ·B		Last Revised:
hammer to 5.	5m.				[Cone Ar 90degre	n gle e		Hamm 63.50	er Mass	5:	
						Cone Di 50mm	iameter:		Fall He 750mr	e ight: n		ISO 9002

Causeway Geotech Lto	t New F	Port of Gal		Dynamic Probe No. DP16					
Method and Equipment: Dynamic Probing to 2.20m by Dando Terrier	Co-ord 131248	s: 3.0mE	Client:	Galwa	y Harbour	Compar	у		Sheet 1 of 1
	223951	.0mN	Enginee	er: Patric J.To	k bin & Co. L	_td			Operator:
	Ground -3.00m	d Level: CD	Dates:	14/03	/2012				Logger: DC
Depth (m) Level (mCD) Blows per 1	00mm		5	10	Blow Count	t	20	25	Torque (Nm)
0.00 -3.00 0			1		••••				-
0.50 -3.50 _0 _0									-
1.00 -4.00 <u>0</u>	0								-
1.50 -4.50 <u>0</u>									-
2.00 -5.00 <u>3</u> 12	0_2								
									- - - -
									- - - -
									-
									-
									-
									-
									-
									-
									-
									- - - -
									-
Remarks:			1	I	1		Fest Method:	1	Last Revised:
Prope fell under its own weight plus hammer to 1.8m.				Cone Ang 90degree	le		Hammer Mass	5:	
		Cone Dia 50mm	neter:		Fall Height: 750mm	AGS			

Cause	way Ge	otech Ltd	No. Projec 1 Name	et New F :	Port of	Dynamic Probe No. DP17					
Method and E	quipment:		Co-ords	s:	Client:	G	alway Hart	oour Comp	bany		Sheet 1 of 1
Dynamic Prob	ing to 5.90m by	Dando Terrier	131256 223807	.0mE .0mN	Enginee	er: P	atrick				Scale: 1:50
			Ground	Level:	Dates:	1	4/03/2012	50. Liu			Operator:
			-3.50m				Blow C	Count			Logger: DC
Depth (m)	Level (mCD)	Blows per 100)mm		5	10	1	15 	20	25	Torque (Nm)
- 0.00 -	-3.50		0								-
0.50	-4.00										
- - 1.00 -	-4.50		<u>0 0 </u>								-
 1.50	-5.00		0								-
2.00	-5.50		0								
- 2.50	-6.00		0								-
- 3.00	-6.50		0								
3.50	-7.00		00								
- - 4.00	-7.50		0								-
4.50	-8.00	<u> </u>	21_								-
5.00	-8.50	<u>2</u> 2 2	22								-
5.50	-9.00	<u> </u>	<u>4</u> 10								
-			<u>27</u> <u>30</u>								
-											
-											- - -
-											
-											-
-											-
-											
-											
-											-
-											-
Remarks:	<u> </u>				1	1		1	Test Meth	od:	Last Revised:
Probe fell une hammer to 3	der its own weigł .9m.	nt plus			[Cone	Angle		Hammer I	/lass:	05/04/2012
						Cone	e Diameter:		Fall Heigh	ıt:	ISO 9002
						50m	m		roumm		

Cause	Causeway Geotech Ltd Project No. Name: New Name: Name: New Name: New Name: N							New Port of Galway					
Method and E	quipment:		Co-ords	;	Client:	Galway H	arbour Con	npany		Sheet 1 of 1			
Dynamic Prob	ing to 6.70m by	Dando Terrier	131206. 223561.	.0mE .0mN	Enginee	: Patrick	8 Ca 144			Scale: 1:50			
			Ground	Level:	Dates:	J. Tobin 14/03/20	2 CO. Lta			Operator:			
			-4.10m0			Blo	w Count			Logger: DC			
Depth (m)	Level (mCD)	Blows per 100)mm		5	10	15	20	25	Torque (Nm)			
- 0.00	-4.10		0							-			
- 0.50	-4.60									-			
- 1.00	-5.10		<u>0</u>							-			
1.50	-5.60		<u>0</u>							-			
-			<u> </u>							-			
- 2.00	-6.10												
2.50	-6.60		<u> </u>										
3.00	-7.10		<u>0</u>							- - - -			
3.50	-7.60		<u>0</u>							-			
- 	-8.10		<u>0</u>							- - - -			
- - 4.50	-8.60		0										
- - 5.00	-9.10	2 2 2	0							- - - -			
- 5.50	-9.60	<u>5</u> 55	34										
- - - 6.00	-10.10	<u>9</u> <u>10</u> 12	<u>67_</u>										
- - 6.50	-10.60	<u>17</u> <u>22</u> <u>30</u>	<u>12</u> 15										
										-			
- 										· - - -			
-													
-										-			
 _ _										-			
-													
-													
Remarks:	ler its own woich	nt plue						Test Meth DPSH-B	od:	Last Revised:			
hammer to 4	8m.	ιι μιυο			[Cone Angle		Hammer N	Nass:	 			
						Cone Diamet	er:	Fall Heigh	t:	ISO 9002			
						oumm							

Cause	way Ge	otech Ltd	Project N 12-16	No. Projec Name	t New Port of Galway						Dynamic Probe No. DP19
Method and E	quipment:		Co-ords	:	Client:	1	Galway Harb	our Comp	any		Sheet 1 of 1
Dynamic Prob	ing to 3.50m by	Dando Terrier	131102. 223303.	.0mE .0mN	Enginee	er:	Patrick				Scale: 1:50
			Ground	Level:	Dates:		14/03/2012				Operator:
			-5.30m0				Blow C	ount			Logger: DC
Depth (m)	Level (mCD)	Blows per 100)mm		5	1	0 1	15 	20	25	Torque (Nm)
- 0.00	-3.30		0								-
0.50	-5.80	<u> </u>									-
1.00	-6.30		<u> </u>								
- 1.50	-6.80		<u> </u>								- - -
- - - 200	-7 30		<u>o</u>								-
	-7.50		0								-
2.50	-7.80										
- 3.00	-8.30		<u>7_</u> _6_								- -
- 3.50	-8.80	<u></u>	<u>19</u> _ <u>21</u>								
-											-
=											-
-											
-											-
-											-
- - -											-
-											
-											-
-											-
- - -											-
-											-
-											-
											-
											н н
-											
Remarks: Probe fell une	l der its own weiał	nt plus							Test Metho DPSH-B	d:	Last Revised: 05/04/2012
hammer to 2	.5m.					Con 90d	egree		Hammer M 63.50	ass:	
						Cor	ne Diameter:		Fall Height	:	ISO 9002

Causeway Geotech Ltd	lo. Projec Name:	t New F	Port of Galway		Dynamic Probe No. DP20			
Method and Equipment:	Co-ords:	:	Client:	Galway Ha	rbour Comp	bany		Sheet 1 of 1
Dynamic Probing to 5.60m by Dando Terrier	131015.0 223105.0	0mE 0mN	Enginee	r: Patrick				Scale: 1:50
	Ground	Level:	Dates:	J. Tobin &	Co. Ltd			Operator:
	-6.60mC	D	Dutes.		Count			Logger: DC
Depth (m) Level (mCD) Blows per 10	00mm		5	10	15	20	25	Torque (Nm)
	0							-
0.50 -7.10 <u>0</u> <u>0</u> <u>0</u>								
- 1.00 -7.60 <u>0</u> 0	<u> </u>							-
1.50 -8.10 <u>0</u>	<u> </u>							- - - -
2.00 -8.60 0	<u> </u>							- -
2.50 -9.10 <u>0</u> 0	<u> </u>							-
- 3.00 -9.60 <u>0</u> 0	<u> </u>							-
3.50 -10.10 <u>0</u> 0	<u> </u>							
4.00 -10.60 3 3 4	2							-
4.50 -11.10 _7 _7 _8	6_							-
5.00 -11.60 <u>10</u> <u>11</u> 12	<u> 8 </u>							-
5.50 -12.10 <u>23</u> <u>30</u>	<u>15</u> <u>18</u>							- - - -
								- -
								- - -
-								- -
								- - -
- - - - -								- - - -
								-
Remarks:						Test Method DPSH-B	:	Last Revised:
hammer to 3.8m.				Cone Angle 90degree		Hammer Ma 63.50	55:	
				Cone Diameter 50mm	:	Fall Height: 750mm	AGS	

APPENDIX E

CPT report by Insitu Site Investigations Ltd

2

PROJECT: GALWAY HARBOUR

STATIC CONE PENETRATION TESTING FACTUAL REPORT

CLIENT: CAUSEWAY GEOTECHNICS LIMITED

CONTRACT No.: 1001PD

Issue	Date	Description	Prepared	Checked	Approved
01	30/03/12	Final	RW	CD	DW

Report No.: 1120134R001RW

Causeway Geotechnics Limited

Galway Harbour

Date: 30 March 2012 Our Ref: 1120134

Causeway Geotechnics Limited

8 Drumahiskey Road

Balnamore

Ballymoney

Co. Antrim

BT53 7QL

Attention: Mr David Cameron

Dear Mr Cameron

Penetration House, 13 Vale Road, Battle, East Sussex, TN33 0HE. Tel: 0845 862 0558 Fax: 0845 862 0559 Email: mail@insitusi.com www.insitusi.com Company Reg No.: 6339499 VAT No.: 922 3561 41

STATIC CONE PENETRATION TESTING AT GALWAY HARBOUR

We have pleasure in providing a digital copy of our report and data in AGS format for the above project.

We hope that you are satisfied with the performance of our staff, equipment and reporting on this project. If you should have any queries about any aspect of the works carried out, please do not hesitate to contact us. We look forward to being of service to you in the future.

Yours faithfully, In Situ Site Investigation Limited

Nub

Darren Ward Director

Contents

1.0	INTR	ODUCTION	5
2.0	FIEL	DWORK	6
2.1	CP	T RIG	6
2.2	CP	TU CONE	6
2.3	TE	ST PROCEDURE	6
2.5	PO	SITIONING	7
3.0	CON	E PENETRATION TEST RESULTS	8
3.1	ES	TIMATED SOIL BEHAVIOUR TYPE PLOT (FORM CPT0001)	8
3.	1.1	Estimated Soil Behaviour Type	8
3.	1.2	Friction Ratio (<i>R_t</i>)	9
3.	1.3	Depth Correction	9
3.2	ME	ASURED PORE PRESSURE PLOT (CPT0002)	
3.	2.1	Pore Pressure Results (u ₂)	10
3.	2.2	Corrected Cone Resistance (q _t)	10
3.	2.3	Pore Pressure Ratio (<i>B_q</i>)	11
3.	2.4	Soil Unit Weight	11
3.	2.5	In Situ Pore Pressure	12
4.0	GEO	TECHNICAL PARAMETERS	13
4.1	SO	IL BEHAVIOUR TYPE INDEX	13
4.2	ST	ANDARD PENETRATION TEST (SPT) N VALUE	14
4.3	SH	EAR STRENGTH	15
4.4	RE	LATIVE DENSITY (<i>D</i> _r)	15
4.5	FR	ICTION ANGLE	
4.6	FIN	IES CONTENT (<i>FC</i>)	17
5.0	REFE	RENCES	
No 11	0010		

APPENDIX A	20
CONE CALIBRATION CERTIFICATE – S10CFIP.742	21
CPT PROJECT SUMMARY SHEET	22
3.5 TONNE EXCAVATOR MOUNTED RIG	23
SOIL DESCRIPTION TABLES	24
EXPLANATION OF SYMBOLS	25
APPENDIX B	26
APPENDIX C	41

1.0 INTRODUCTION

At the request of Causeway Geotechnics Limited (The Client), In Situ Site Investigation Limited (In Situ S.I.) carried out a soils investigation at Galway Harbour.

The investigation consisted of performing Static Cone Penetration Tests (CPTs). All tests were performed at locations set out by the Client.

The fieldwork details are shown below in figure 1.1 and figure 1.2.

Fieldwork Summary			
CPT Rig Used	3.5 tonne Track Mounted Rig (CPT004)		
Operators	Ian Musson and Martin Hopwood		
Date Started	22/03/12		
Date Finished	23/03/12		
In Situ S.I. Project Manager	Darren Ward		
Main Contractor's Site Manager	David Cameron		

Figure 1.1: Table showing the fieldwork summary details.

Completed Fieldwork Summary

7 Static Cone Penetration Tests (CPTs) to a maximum depth of 7.35m or refusal. Each test measured Cone Resistance (q_c), Sleeve fiction (f_s), Measured Pore Pressure in the shoulder position (u_2), inclination in X and Y planes.

Provision of factual report with estimated soil type, geotechnical parameters and AGS data.

Figure 1.2: Table showing the completed fieldwork summary details.

2.0 FIELDWORK

2.1 CPT RIG

All works were performed with a 3.5 tonne CPT Track Mounted Rig (CPT004) equipped with a 20 tonne capacity hydraulic ram set. A full data sheet for this rig is presented in Appendix A.

2.2 CPTU CONE

A single electric CPTU cone was used S10CFIP.742 a type conforming to the requirements of Application Class 1 of Eurocode 7 (2007). The cones measured parameters are shown in figure 1.2. The cone had a cross-sectional area of 10 cm^2 . The piezo filter was mounted in the shoulder (u_2) position (see figure 3.2). A full datasheet of the cone used is shown in Appendix A.

2.3 TEST PROCEDURE

The tests are carried out in accordance with the International Reference Test Procedure for CPT and CPTU (ISSMGE).

The final depths of the tests were determined by either completion to the specified test depth or when the maximum safe capacity of the equipment was reached. A schedule of the tests performed is shown in Appendix A which has been compiled from the operator's daily progress reports.

The data is transmitted from the digital CPTU through an umbilical cable that runs through the push rods to the data acquisition system.

The rate of penetration is kept constant at $2 \text{cm/s} \pm 10\%$ except when penetrating very dense or hard strata. A copy of the depth encoder calibration certificate is shown in Appendix A. Results are displayed instantaneously on the computer logging screen. The results are recorded on the computer hard disc.

Before each test is carried out zero values are taken of the cone to check to see if it is within calibration. At the end of each test, zero values are taken again to see if there has been any drift during the test. These values are inspected during the post processing stage. This is a quality check on the data and the testing procedure. Individual test zero values are shown on their corresponding test results on form CPT0001 in Appendix B.

Causeway Geotechnics Limited

Galway Harbour

2.5 **POSITIONING**

All positions were set out by the Client on site.

3.0 CONE PENETRATION TEST RESULTS

All tests carried with the CPTU cone are shown in Appendix B and displays all results as described in section 3.1 and 3.2. Two graphs are shown for each test. The first graph (form CPT0001 Estimated Soil Behaviour Type Plot) shows the measured readings from the cone and the estimated soil description, these are plotted at a 0-20MPa scale for the cone resistance. The second graph (form CPT0002 Measured Pore Pressure Plot) shows derived and corrected values along with the pore pressure results; these are plotted at a 0-80MPa scale for the cone resistance.

3.1 ESTIMATED SOIL BEHAVIOUR TYPE PLOT (FORM CPT0001)

The estimated soil behaviour type plot presented in Appendix B details the following:

- Measured cone end resistance (q_c) and sleeve friction (f_s) ;
- Friction ratio (*R_f*);
- Inclination, X and Y axis;
- Estimated behaviour soil type log (Robertson *et.al* 1986, friction ratio chart)
- Legend indicating soil log (BS5930:1999 legend)

3.1.1 Estimated Soil Behaviour Type

The estimation of soil behaviour type using measurements of cone and friction is based upon the variation of the friction ratio in respect to the cone resistance. The friction ratio varies depending upon whether the soil is cohesive or granular. The cone resistance varies depending on the strength and densities of the soil.

The interpretation is based on Robertson *et. al.* (1986) (Friction ratio chart) which is shown below (figure 3.1).

The density and stiffness values descriptions are based on derived N60 (Robertson *et. al.* (1986)) and S_u (Lunne and Kleven (1981)) values from the cone resistance in accordance to BS5930:1999. A list of these values are presented in Appendix A.

Causeway Geotechnics Limited

Galway Harbour

Figure 3.1: Robertson et al., 1986 soil behaviour type chart.

3.1.2 Friction Ratio (*R_i*)

The friction ratio (R_f) is the ratio between the sleeve friction and the cone resistance. This is a very useful parameter for carrying out soil interpretation

Fricton Ratio
$$(R_f) = \left(\frac{Sleeve Friction(f_s)}{Tip Resistance(q_c)}\right) \times 100$$
 (Lunne et al., 1997)

3.1.3 Depth Correction

All tests in the report have been corrected for depth difference caused by inclination. This has been calculated using the method described in the International Reference Test Procedure (2001).

To calculate the corrected depth the following formula is used:

$$z = \int_{0}^{l} C_{h} \cdot dl$$

where:

z = penetration depth, in m;

I = penetration length, in m;

 C_h = correction factor for the effect of the inclination of the CPTU relative to the vertical axis.

The equation for calculating the correction factor for the influence of the inclination for a biaxial inclinometer is:

$$C_h = (1 + tan^2 \propto + tan^2 \beta)^{-1/2}$$

IN SITU

3.2 MEASURED PORE PRESSURE PLOT (CPT0002)

Behind each estimated soil type plots in Appendix B is a second plot showing the pore pressure results as well as corrected and derived parameters. These logs detail the following:

- Measured Pore pressure (*u*₂),
- Corrected cone resistance (*q*_t);
- Pore pressure ratio (B_q)
- Sleeve friction (*f_s*)

3.2.1 Pore Pressure Results (*u*₂)

The CPTU measured the pore pressure during penetration. If the material is free draining and saturation is maintained it will normally measure hydrostatic pore pressure. In material that is not free draining it will record the total pore pressure (hydrostatic plus any excess pore pressures generated) created by the cone penetrating through this material

The filter element can be mounted in one of three positions. For the tests carried out in this report the filter was mounted in the u_2 , or shoulder position (see figure 3.2)

Figure 3.2: Diagram showing pore pressure filter locations (after Lunne et al., 1997)

3.2.2 Corrected Cone Resistance (q_t)

For each penetration test, the measured Cone Resistance, q_c , can be corrected for the 'unequal area effect' due to the influence of the ambient pore water pressure acting on the cone.

The corrections have been applied using the following equation:

 $q_t = q_c + [u_{2}(1 - \alpha)]$ (Lunne *et al.*, 1997)

Where α is the cone area ratio, which is **0.869** for the cone used on this project (This value is geometrically measured).

3.2.3 Pore Pressure Ratio (B_q)

Pore pressure ratio is the ratio between the measured pore pressure generated during penetration and the corrected cone resistance minus the total overburden stress.

Pore pressure ratio as defined by Senneset and Janbu (1985) is defined as:

$$B_q = \frac{u_2 - u_0}{q_t - \sigma_{vo}}$$

where:

 u_2 = pore pressure measured between the cone and the friction sleeve u_0 = equilibrium pore pressure σ_{vo} = total overburden stress q_t = cone resistance corrected for unequal end area effects

3.2.4 Soil Unit Weight

For calculations involving the total overburden stress, an estimate of the soil unit weight has to be made. For all calculations in this report, an approximate unit weight is assigned to each soil classification zone from the Robertson *et al.*, 1986 chart.

Figure 3.3 below lists the approximate unit weight for each zone from Lunne et al., 1997.

Zone	Approximate unit weight (kN/m ³)
1	17.5
2	12.5
3	17.5
4	18
5	18
6	18
7	18.5
8	19
9	19.5
10	20
11	20.5
12	19

Figure 3.3: Estimate of unit weights based on the Robertson *et al.*,(1986) friction ratio chart (Lunne *et al.*, 1997).

3.2.5 In Situ Pore Pressure

On the pore pressure plot is a second line (in red) showing the inferred in situ or hydrostatic pore pressure, u_0 . This is calculated from a known or estimated water table level.

In the report, the water table has been inferred at 2m below ground level.

4.0 GEOTECHNICAL PARAMETERS

A number of empirical correlations can be carried out to derive geotechnical parameters from CPT data. This report includes a number of these parameters which are described in this section. For the CPT data only soil behaviour type, SPT values, shear strength and relative density are derived and are shown in Appendix C. For the CPTU data all the derived parameters described in the section are derived and displayed in Appendix C.

Please note that a number of the correlations are derived for a certain type of soil, and may not be appropriate for all the soil types encountered on this project.

4.1 SOIL BEHAVIOUR TYPE INDEX

The soil behaviour type index was derived by Jefferies and Davies (1991). It was created to allow a continuous variation of $(q_c/p_a)/N_{60}$ with soil type, which was an improvement on the discontinuous nature of an earlier conversion by Robertson *et al.* (1986).

This approach has been modified for use with the Robertson (1990) normalised CPT soil classification chart. The boundaries between soil behaviour type zones (2 to 7) can be approximated as concentric circles, and the radius of each circle can be used as a soil behaviour type index (Lunne *et al.*, 1997).

The soil behaviour type index, I_c , can then be defined as:

$$I_c = ((3.47 - logQ_t)^2 + (logF_r + 1.22)^2)^{0.5}$$

The boundaries of soil behaviour type are then given in terms of the index, I_c . See figure 4.1 for the table of soil behaviour types.

Soil Behaviour Type Index, <i>I_c</i>	Zone (from Robertson 1990 normalised chart)	Soil Behaviour Type
<i>l_c</i> < 1.31	7	Gravelly sand to dense sand
1.31 < <i>l_c</i> < 2.05	6	Sands – clean sand to silty sand
2.05 < <i>l_c</i> < 2.60	5	Sand mixtures – silty sand to sandy silts
2.60 < <i>l_c</i> < 2.95	4	Silt mixtures – clayey silt to silty clay
2.95 < <i>l_c</i> < 3.60	3	Clays: silty clay to clay
<i>l_c</i> > 3.60	2	Organic soils - peats

Figure 4.1: Boundaries of soil behaviour type index, *I*_c.

4.2 STANDARD PENETRATION TEST (SPT) N VALUE

The SPT N value can be derived using differing ratios of the relationship between q_c and N_{60} . These ratios were suggested by Robertson *et al.* (1986) and are shown in figure 4.2.

Zone	Soil Behaviour Type	(q _c /p _a)/N ₆₀
1	Sensitive fine grained	2
2	Organic material	1
3	CLAY	1
4	Silty CLAY to CLAY	1.5
5	Clayey SILT to silty CLAY	2
6	Sandy SILT to clayey SILT	2.5
7	Silty SAND to sandy SILT	3
8	SAND to silty SAND	4
9	SAND	5
10	Gravely SAND to SAND	6
11	Very stiff fine grained	1
12	SAND to clayey SAND	2

Figure 4.2: SPT N value ratios from Robertson *et al.*, 1986.

For the best results for the calculation of N_{60} it is recommended to use the soil behaviour type index, I_{c} . This is the method used in this report.

Report No.: 1120134R001RW

The relationship between N_{60} and I_c is defined as:

$$\frac{(rac{q_c}{p_a})}{N_{60}} = 8.5(1 - rac{I_c}{4.6}) ext{ (Lunne et al., 1997)}$$

It is suggested (Jefferies and Davies, 1991) that this method provides a better estimate of the SPT N values than the actual SPT test due to poor repeatability of the SPT.

4.3 SHEAR STRENGTH

Estimation of s_u from CPTUs using corrected cone resistance is made from the following equation:

$$s_u = \frac{(q_t - \sigma_{vo})}{N_{kt}}$$
 (Lunne *et al.*, 1981)

where:

 N_{kt} = empirical cone factor σ_{vo} = total overburden stress.

Research has shown that the cone factor N_{kt} varies between 11 and 30 with an average value of 15. We present an upper bound s_u value with an N_{kt} value of 15 and a lower bound s_u value with an N_{kt} value of 20. This report only presents this data on soils with a soil behaviour type index (I_c) of greater than 2.60.

4.4 **RELATIVE DENSITY** (*D*_{*r*})

Relative density has been derived using a method by Jamiolkowski *et al.*, 1985 (see figure 4.3). This correlation was derived from five predominantly silica sands under controlled laboratory conditions. The sands were normally consolidated, un-cemented, un-aged and predominantly quartz. It is noted that field cases are likely to show more variability than that demonstrated in figure 4.3.

The correlation in this report is calculated on soil with a soil behaviour type index (I_r) of less than 2.60. The formula for calculating relative density (D_r) is:

Report No.: 1120134R001RW Geotechnical Parameters

Causeway Geotechnics Limited

Galway Harbour

Figure 4.3: Correlation between q_c and relative density (after Jamiolkowski et al., 1985)

4.5 FRICTION ANGLE

Friction angle is derived using the Robertson and Campanella (1983) method from their work looking at calibration test data (see figure 4.6). The correlation is based on un-aged uncemented quartz sand. The formula for peak Φ ' from CPTU is:

$$\Phi' = \arctan\left[0.1 + 0.38\log(\frac{q_t}{\sigma_{vo}})\right]$$

The correlation in this report is calculated on soil with a soil behaviour type index (I_c) of less than 2.60.

Figure 4.6: Peak friction angle of clean quartz sands from CPTU (after Robertson & Campanella, 1983).

4.6 FINES CONTENT (FC)

It is possible to estimate fines content from the friction ratio of sandy soils. Suzuki *et al.*, (1995) demonstrated how friction ratio (R_f) varies with fines content (*FC*) (see figure 4.7)

Figure 4.7: Variation of fines content with friction ratio (Suzuki et al., 1995)

Robertson and Fear (1995) used this relationship and integrated it with the soil behaviour type index (I_c), this was later updated in 1998. This relationship is shown below:

if $I_c < 1.26$ apparent fines content FC (%) = 0

if $1.26 \le I_c \le 3.5$ *apparent fines content FC* (%) = $1.75 I_c^3 - 3.7$

if $I_c > 3.5$ apparent fines content FC (%) = 100

5.0 **REFERENCES**

British Standard BS5930:1999, "Code of practice for site investigations". BSI, 1999.

BS EN 1997-2:2007 Eurocode 7. Geotechnical design. Ground investigation and testing.

- Jamiolkowski, M., Ladd, C.C., Germaine, J.T. and Lancellotta, R. (1985) "New developments in field and laboratory testing of soils". State-of-the art report. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1, 57-153, Balkema Pub., Rotterdam.
- Jefferies, M.G. and Davies, M.P. (1991) "Soil classification by the cone penetration test": Discussion. Canadian Geotechnical Journal, 28(1), 173-6.
- Jones, G.A. and Rust, E. (1995) "Piezocone settlement prediction parameters for embankments on alluvium". Proceedings of the International Symposium on Cone Penetration Testing, CPT '95, Linköping, Sweden, 2, 501-8, Swedish Geotechnical Society
- Kulhawy, F.H. and Mayne, P.H. (1990) "Manual on estimating soil properties for foundation design". Electric Power Research Institute, EPRI, August, 1990.
- Lord, J.A., Clayton, C.R.I., and Mortimore, R.N. (2002) "Engineering in chalk". Ciria Guide C574.
- Lunne, T. And Kleven, A. (1981) "Role of CPT in North Sea foundation engineering". Session at the ASCE National Convention: Cone Penetration Testing and Materials, St. Louis, 76-107, American Society of Engineers (ASCE).
- Lunne, T. And Christophersen, H.P. (1983) "Interpretation of cone penetrometer data for offshore sands". Proceedings of the Offshore Technology conference, Richardson, Texas, Paper No. 4464.
- Lunne, T., Robertson, P. K. And Powell, J. J. M. (1997) "Cone Penetration testing in Geotechnical Practice". Blackie.
- Mitchell, J.K. and Gardner, W.S. (1975) "In situ measurement of volume change characteristics". Proceedings of the ASCE Specialty Conference on In Situ Measurements os Soil Properties, Raleigh, North Carolina, 2, 279-345, American Society of Engineers (ASCE).
- Robertson, P.K. (1990) "Soil classification using the cone penetration test". Canadian Geotechnical Journal, 27(1), 151.

Robertson, P.K. and Campanella, R.G. (1983) "Interpretation of cone penetrometer test: Part

Report No.: 1120134R001RW

1: Sand". Canadian Geotechnical Journal, 20(4), 718-33.

- Robertson, P.K. and Fear, C.E. (1995) "Liquefaction of sands and its evaluation. IS TOKYO '95". First International Conference on Earthquake Geotechnical Engineering, Keynote Lecture, November, 1995.
- Robertson, P.K. and Wride (Fear), C.E. (1998) "Evaluating cyclic liquefaction potential using the cone penetration test". Can. Geotech. J. Vol. 35.
- Robertson, P.K., Campanella, R.G., Gillespie, D. And Greig, J (1986) "Use of piezometer cone data". Proceedings of the ASCE Specialty Conference In Situ '86: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, 1263-80, American Society of Engineers (ACE).
- Senneset K. And Janbu, N. (1985) "Shear strength parameters obtained from static cone penetration tests. Strength Testing of Marine Sediments; Laboratory and In Situ Measurements". Symposium, San Diego, 1984, ASTM Special technical publication, STP 883, 41-54.
- Senneset, K., Sandven, R. And Janbu, N. (1989) "The evaluation of soil parameters from piezocone tests". Transportation Research Record, No. 1235, 24-37.
- Suzuki, Y., Tokimatsu, K., Taya, Y. And Kubota, Y. (1995) "Correlation between CPT data and dynamc properties of in situ frozen samples". Proceedings of the Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, 1, 249-52, University of Missouri Rolla.
- Topp, G.C., Davis, J.L. and Anna, A.P. (1980). "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines". Water Resiur. Res., 16, 574-582.
- Waltham, A.C., 2002. "Foundations of Engineering Geology". Blackie Academic and Professional, 2002.

APPENDIX A

GENERAL INFORMATION

LIST OF FIGURES

Description	Pages Included
Cone Calibration Certificate for Cone S10CFIP.742	1
CPT Project Summary Sheet	1
3.5 Tonne Track Mounted Rig Datasheet	1
CPT Soil Description Table	1
Explanation of Symbols	1

CONE CALIBRATION CERTIFICATE – S10CFIP.742

CPT PROJECT SUMMARY SHEET

HOLE	Final Depth of Test (m)	Date of Test	Cone Used	Test Remarks
CPT 01	1.26	22.03.12	S10CFIP742	Test Refused on Total Pressure
СРТ 02	7.35	22.03.12	S10CFIP742	Test Refused on Total Pressure
CPT 03	1.41	22.03.12	S10CFIP742	Test Refused on Total Pressure
СРТ 04	5.72	22.03.12	S10CFIP742	Test Refused on Total Pressure
CPT 05	6.94	22.03.12	S10CFIP742	Test Refused on Total Pressure
СРТ 06	4.12	22.03.12	S10CFIP742	Test Refused on Total Pressure
CPT 07	5.46	22.03.12	S10CFIP742	Test Refused on Total Pressure

3.5 TONNE EXCAVATOR MOUNTED RIG

3.5 Tonne CPT Track Mounted Rig (CPT004) Datasheet

3.5 Tonne CPT Track Mounted Rig

CPT Rig Details										
Drive System	Small tracked system									
Total Weight	3.5 Tonnes									
Addtitonal Reaction Weiight	4 Hydraulicly Driven Screw Anchors									
CPT Ram Thrust Capacity	20 Tonnes									
Maximum Penetration	10-30m depending on the ground conditions and reaction from screw anchors.									
Performance Rates	50-100m of testing in a day depending on access to positons.									
Typical Sites for this Rig	Specialises on soft ground sites. Can be mounted on marine jack-ups and rail trailers.									

CPT Rig I	Dimensions
Width	1.20m
Length	2.90m
Height	2.85m

Datasheet 011v001

insitusi.com

20/07/2009

SOIL DESCRIPTION TABLES

GRANULAR SOILS (Sands and Gravels)

Description	Cone Resistance (<i>qc</i>) (MPa)
Very Loose	0 – 2
Loose	2-4
Medium Dense	4 – 12
Dense	12 – 20
Very Dense	>20

COHESIVE SOILS (Clays)

Description	Cone Resistance (<i>q_c</i>) (MPa)	Equivalent S _u value from <i>q_c</i> (kPa)
Very Soft	0-0.3	0 –20
Soft	0.3 – 0.5	20 - 40
Firm	0.5 – 1.0	40 – 75
Stiff	1.0 – 2.0	75 – 150
Very stiff	2.0-4.0	150-300
Hard	>4.0	>300

(from Waltham, 2002)

EXPLANATION OF SYMBOLS

- $a(\alpha) =$ area ratio of the cone $(=A_n/A_c)$
 - A_c = projected area of the cone
 - $A_n =$ cross-sectional area of shaft
 - B_q = pore pressure parameter (=(u_2 - u_0)/(q_t - σ_{vo}))
 - $c_h =$ horizontal coefficient of consolidation

$$Dr = Pr = e_{max} - e_{max} + 100\%$$

relative density $\left(D_r = \frac{e_{max} - e_{max}}{e_{max} - e_{min}} \times 100\% \right)$

- e = void ratio
- e_o = initial void ratio
- e_{max} = maximum void ratio
- e_{min} = minimum void ratio
 - f_s = unit sleeve friction
- FC = fines content
- I_c = soil behaviour type index
- I_r = rigidity index = G/s_u
- m_v = coefficient of volume change
- *M* = constrained deformation modulus
- N = no. Of blows in the SPT
- N_k or N_{kt} cone factor
 - N₆₀ = SPT energy ratio
 - q_c = measured cone resistance
 - q_e = effective cone resistance = (q_t - u_2)
 - q_n = net cone resistance = $(q_t \sigma_{vo})$
 - q_t = corrected cone resistance = q_c +(1-a) u_2
 - Q_t = normalised cone resistance = $(q_t \sigma_{vo})/\sigma'_{vo}$
 - R_f = friction ratio (=(f_s/q_c)×100%)
 - s_u = undrained shear strength
 - t_{50} = time for 50% dissipation of measured pore pressure
 - $u_0 =$ in situ pore pressure
 - $u_1 =$ pore pressure measured on the cone
 - u_2 = pore pressure measured behind the cone
 - Δu = measured pore water pressure
 - φ = total friction ratio

APPENDIX B

CPT RESULTS

LIST OF FIGURES

Description	Pages Included
CPT 01 – CPT 07 (Printed on Form CPT0001) Estimated Soil Behaviour Type Plot	7
CPT 01 – CPT 07 (Printed on Form CPT0002) Measured Pore Pressure Plot	7

		Cone	nd Resist	tance, qc ((MPa)	40	40		40	40		0	Friction	Ratio, Rf (%	6)	Inclinatio	on (degre	ees)				
) 2 ++++++++++++++++++	2 4 +++++++	, ,,,,,,,,,,,,,,,,,,	6 	8 	10 +++++++	12 1 +++++++++++++++++++++++++++++++++++	4 	16 +++++++++++	18 ++++++++++++++++++++++++++++++++++++	20	0 L	2	4	6 8 	-15	0 	15 			IN S	ITU
(5 5	0 10	D 1	50 2	200	250	300 3	50	400	450	500					<u> </u>	Axis	Estimated Soil	Туре		SITE INVEST	FIGATION
0.0		Sleeve	Friction, f	s (kPa)												Y	Axis (t	based on Robertson	et. al. (1986))			0
0.0-	\																1		Very soft CLA	Y (3)		
	<u> (</u>																					50
1.0	2									_		1				1	(]	_		0.0.0.10 (0)		_ib ≣ie
		_		<u> </u>									M.			1	7		Medium dense	End of CDT of 1.26 m		그러
																				End of GPT at 1.20 m		tle
2.0										_		2				2		_				-2
																						-
3.0-												3				3						E Z C
																1						
4.0												4				4						
																						ŏĭ
																						RTA
5.0										_		5				5		_				
																1						ଜୁତ
6.0-												6				6						° ₽ ₽
																						ξÕ
\sim 70												-				_						
E 7.0																<u> </u>						
epth																						S
8.0										_		8				8		_				-8
																						-
																						-
9.0										-		9				9	+	-				-9
																1						
40.0																						- 10
10.0												10				10						
11.0										_		11		_		11		_				-11
																						-
12.0										-		12				12		_				- 12
																						-
																1						
13.0-												13				13						- 13 E
14 0-												14				14						- 14
15.0-												15				15			1			± 15
	Location:	GAL	VAY				Date of T	est:	22/03/2012				Tin Zero Pre-			Zero Valu	10000 m1/	/ Tin Zero Differon	ce: -1 8510 %	PIEZO CONE	PENETRATI	ON TEST
	Coordinate	s: 1307	92.000E -	224414.00	00N		Date of P	lot:	30/03/2012			Sle	eve Zero Pre: -		Sleeve Ze	o Post: 193.	0000 mV	Sleeve Zero Differen	ce: 0.0000 %	007		
	Ground Lev	vel: -0.70	m CD				File Name	e:	1120134 - (CPTU 01	Pore	e Pres	sure Zero Pre: 22	0.0000 m R 6r	e Pressure Ze	ro Post: 218.	0000 n F Vø	øre Pressure Differen	ice: 0.9174 %	CPT	U U1	
	Cone & Rig	g Used:S10	CFIP.742	- CPT 003	3		Checked	By:	lehal		X Inc	clinom	neter Zero Pre: 24	92.0000 XaVr	clinometer Ze	ro Post: 2536	6.0000Xn1	Maclinometer Differen	ice: -1.7350 %	incituci	com	
	Remarks:	Test	efused or	total pres	ssure.			10			Y Ind	clinom	eter Zero Pre: 24	92.0000 hrith	clinometer Ze	ro Post: 2536	6.0000 Yml	Maclinometer Differen	ice: -1.7350 %	insitus		Form: CPT0001

0	2	Cone End Resistance, qc (MPa) 2 4 6 8 10 12 14 16 18 20								20	Friction 0 2	Ratio, Rf (%) 4 6	8	Inclinatior	n (degrees)) 15	5							
H O		100	150	200 200) 25	 i0 3(400	450	Type		SITE INVESTIGATION											
0.0		Sleeve Fi	riction, fs ((kPa)										YА	xis (base	ed on Robertsor	Very soft to sc	oft sensitive fine grained (1)		E 0			
	2																			Clie Jot			
1.0					_													e SAND to silty SAND (8)		ent: o Tit			
2.0							\vdash				2		:				~~	End of CPT at 1.41 m		e:			
						l																	
3.0										\neg	3												
																				NUS			
4.0											4									= POR			
5.0							⊢				5			, <mark> </mark>						4Υ Q			
																				θEO			
6.0											6			,)TE(ALV			
0.70											-												
pth (m)																							
8.0							\vdash				8									8			
9.0											9		s							9			
10.0											10									- 10			
10.0						ľ																	
11.0										1	11		11							11			
-						ľ																	
12.0										1	12		12							- 12			
13.0										1	13		13							- 13			
						ľ																	
14.0										- 1	14		14	·						14			
						ľ																	
15.0-L	ocation:	GALWA	λY	I	I		Date of Tes	t: 22/03/:	2012		Tip Zoro Pro:		PCPT Z	ero Value	S		xxx: 0.0000 %	PIEZO CONE	PENETRAT				
6	Coordinates Ground Leve	:: 130888 el: -1.30 m	.000E - 22 CD	24264.000	N		Date of Plot File Name:	: 30/03/2 11201	2012 34 - CPTU 03	Pore	Sleeve Zero Pre: - Pressure Zero Pre: -	0000 m®bre	Sleeve Zero	Post: 194.0	000 mVSlee	eve Zero Differer	nce: 0.0000 %	CPT	U 03				
C	Cone & Rig	Used: S10-C	FIP.742 - (CPT 003	170		Checked By	1: Rhibol	1	X Incl Y Incl	linometer Zero Pre: 250 linometer Zero Pre: 250	2.0000 1x1 Vincl 2.0000 1x1 Vincl	inometer Zero	Post: 2452.	0000 XmM/clir 0000 YmM/clir	nometer Differer	nce: 2.0392 %	insitusi	.com	Form: CPT0001			

	_		Correcte	d Cone E	nd Resi	stance,	qt (MPa))		56	64	70 0	20	1.0	Pore P	ressure F	Ratio, B	³ q	1.0 1200	0	20 60	د م	Pore Pr	essure, U	(kPa)	600	000	1200		
	0 ++++	•••••			• ••••	32 	40 ++++	40 			04 ++++++++	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+	-1.0	-0.5	0.0		.5 	н.0 - 1200 Ц Цц	-90	-60						900	1200		
	0	200	400 Sleeve F	60 riction, fs	0 s (kPa)	800	1000	120	0 1	400	1600	1800 20	000								_		Measured In Situ Po	Pore Pres re Pressur	ssure, U2 e, U0 (kF	2 (kPa) Pa)		Es (based o	stimated Soil T In Robertson e	ype t. al. (1986))
0.0	1												1	° 		5								1						-0
	1															{								1						50
1.0	Ł	_				_								1		-4			- 1					1						
	~	~																						1						T t
2.0	-													2					2											0 -2
																														_
3.0	-													3																
																														ž ž
4.0														4					4											P P E
5.0	1					_								5					5											
																														ΞĒ
6.0	-					_								6					6											G A ⊡6 DT
																														L E ≤ C
a 70	-													_																
е 7.0°														1																<u> </u>
Dept																														S S
8.0														8					8											-8
9.0	-					_								9					9											-9
10.0						_							1	10					10											- 10
11.0	-												1	11					11											-11
12.0	-												1	12					12											- 12
13.0	-												1	13					13											- 13
14.0	1-					_							1	14					14											- 14
]																													
15.0	1												l ,	15					15											- 15
	Loca	ition:	GALW	AY								Date of Tes	st:	22/03/	2012									PIE	70.00			RATIC	N TEST	
	Coor	dinates:	13079	2.000E - 2	224414.(000N						Date of Plo	t:	30/03/	2012	04					3									
	Grou	na revel	-U./Ur		- CPT O	13						File Name:	<i>.</i>	112013	34 - CPIU	UΊ			SITE	IN/	/ESTI	GATI	ON			CP	ΊŪ	01		
	Rem	arks:	Test r	efused on	total pre	essure						Oneckeu D	y.	1Chil.	4					INS	ITUSI.C	COM							Fo	rm: CPT0002

	0 4	8 	16 . 	24 +++++++		40 +++++∤+++	40 ++++++	,	ж .+++++++	64 +++++++	72 +++ +++++	80 +++++	-1.0 Luuu	.u-	.5 u	.0 ().5 	∠ו-1.0 µ ו	200 -s	900 -c	500 L	4	0 : 	300 c	500 		1200 4		
	0 20	00 4 Sloov	00 6	600	800	1000	120	0 14	400 1	1600	1800	2000								_		Measured	Pore Pres	sure, U2 (F	kPa) `		Estir	nated Soil Ty	/pe
0.0	N	- Sieev	e Fricuon,	ts (kra)									0 T			,				-	1		re Pressur	е, ОО (кна)		(baseu un		.al. (1986)) ·0
	1																											E	-
	1														-	}												EE	ы Сі
1.0	1		+	-		-			+				1			2		1					1				-	Fŧ	1 b en
	}	┢											1			₽						-	+						Tit t
2.0	1												2					2											.2
																													2
	-																												
3.0	-			+		+	-+			+	_		3					3								_			³ Z O
	-																												
10	1																	4											` < P
4.0													1]]											°0 ∽
	-																											Ē	RIA
5.0			──		_	\rightarrow	\rightarrow		──	<u> </u>	\rightarrow		5					- 5								_	_	l F	.5 C ≺ I
																													ΫH
	-																												ှို့ဝှ
6.0	-									1			6					6									\neg		
	1												1																Š ₽
ç 7.0			 	_		\rightarrow	-+			<u> </u>			7					7							-	_	_		₁ ੨ ፰
th (r	-												1																S
Dep	-																												
8.0			<u> </u>	-					<u> </u>	+			8				1	8									-		8
	-																												
9.0				<u> </u>		-+	\rightarrow		<u> </u>	<u> </u>			9					9									_	<u>E</u>	.9
	-																											E	
	-																												
10.0	-												10					10									_		10
	-																												
11.0	-		<u> </u>			\rightarrow							11					11											·11
-	-																												
	-																												
12.0	-		-						-				12					12									_		12
	-																												
13.0			<u> </u>	<u> </u>		$ \rightarrow$							13					13											·13
	-												1																
	1																												
14.0	-		<u> </u>	+					<u> </u>		_		14					14									_		14
	1																												
15.0													15					15											15
15.0	Location:	GA	WAY								Date of	Test:	22/03	8/2012				- 13 -											15
	Coordinate	es: 130	888.000E	- 224264	4.000N						Date of	Plot:	30/03	8/2012						S			PIEZ	20 CO	NE PE	ENEIF	RATION	TEST	
	Ground Le	evel: -1.3	0 m CD								File Na	me:	11201	134 - C	PTU 03										CP	тн с	אר		
	Cone & Ri	g Used:S1	0-CFIP.74	2 - CPT	003						Checke	∋d By:	11	11				51		VESI						100	55		
	Remarks:	Tes	t refused (on total r	pressure.								Rhu	ha					INS	01051								For	m: CPT0002

APPENDIX C

CPT DERIVED GEOTECHNICAL PARAMETERS

LIST OF FIGURES

Description	Pages Included
CPT 01 – CPT 07 (Printed on Form CPT0003) Soil Behaviour Type and N Value	7
CPT 01 – CPT 07 (Printed on Form CPT0004) Relative Density and Shear Strength	7
CPT 01 – CPT 07 (Printed on Form CPT0006) Fines Content and Friction Angle	7

	0	Correc	ted Cone	End Resis	tance, qt (MPa)	12	14 1	16 18	8 20	0	50	Derived	Shear St	rength, Su	ı (kPa)	0 30	0 0		Derived	Relative De	ensity, Dr (%)	80	100		
			· · · · · · · · · · · · · · · · · · ·	• 	++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	 	++++++++++++++++++++++++++++++++++++++	+++++++++	L.		Deriv	ved Shea	r Strength	. Su Nkt =	15 (kPa)			 						
	0	50 10 — Sleeve	0 1 Friction, f	50 2 is (kPa)	200 2	250 3	300 3	50 4	45	60 500			Deri	ved Shea	r Strength	, Su Nkt =	20 (kPa)							Estir (based on	mated Soil T Robertson e	ype t. al. (1986))
0.0-	And a second second										0 1 2							1	ء ء م							Job Title:
3.0- 4.0-											3							3								CAUSEV
5.0- 6.0-											5							5						_		vAY GEOTEC RT OF GALW
-0.7 (m) Depty (m) -0.8											7							8							 <u></u> 	AY *
9.0- 10.0-											9							9						_		-9 -10
11.0-											11							11						_		-11
12.0- 13.0-											12							12						_		-12 -13
14.0-											14							14								- 14
15.0-	Location: Coordinate Ground Le Cone & Ri Remarks:	GAL es: 1309 evel: -1.80 ig Used:S10	WAY 27.000E - 0 m CD - CFIP.742	223950.0	00N 3				D D F C	ate of Test: ate of Plot: ile Name: hecked By:	22 30 11:	2/03/2012 0/03/2012 120134 - CPTI	J 05		ç	BITE			IGAT COM		PIEZO	CONE F	PENETI PTU 0	RATION 5	N TEST	n: CPT0004

ſ	2	Correc	cted Cone 4	End Resis	stance, qt (MPa) 10	12	14	16	18	20	0	5	Deri 0 1	ved Shear 00 1	Strength, 50	Su (kPa) 200	250	300	0	Deri [.] 20	ved Relativ 40	ve Density 60	, Dr (%) 8	0	100		
ł				+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	-+++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	++-	Ĺ.			Derived Sh	ear Streng	th, Su Nkt	= 15 (kPa	444 a)	L						l		
Ĺ		Sleeve	00 1 e Friction,	50 2 fs (kPa)	200 2	250	300	350	400	450	500				Derived Sh	ear Streng	th, Su Nkt	= 20 (kPa	a)							Esti (based on	mated Soil T Robertson e	ype et. al. (1986))
0.0	}				1							°T							0		-						[-0
1	2																			-								50
1.0								_			_	1	11						1							_		
1	2												2															
201	{												F															e.
2.0	}												5															2
-													\$															
3.0-				<u> </u>	+	+	+				_	3							3	<u>+</u>						-		³ z o
													l I														F-I-I-	
4.0-	1			<u> </u>	<u> </u>							4	\$						4	1								
1		•																										ġğ
1																												F A A
5.0-												5							5	<u> </u>						-		ີ ⊆ ດ
1																												
6.0				<u> </u>	<u> </u>						_	6							- 6	<u> </u>						_		
1																												. ∠ m
7.0-					-	-						7							7							-		
																												Ň i
8.0-				<u> </u>	+	+	<u> </u>	<u> </u>		<u> </u>	_	8							- 8							_		-8
1												1																-
9.0												3							9									9
1																												-
10.0-				<u> </u>	+		+	_			_	10							10	+						-		- 10
1																												
11.0								_				11							11							_		- 11
1												1																-
1																												-
12.0-												12						-	12	1						-		- 12
1																												-
13.0				<u> </u>	+			_			_	13							13							_		- 13
1																												
14.0																												
14.0-												14							14							-		- 14
1																												-
15.0 [.]		0.41		L								15 L	02/2012						15	1								E 15
	Location:	GAL		222660 0						Date of	est:	22/	/03/2012									PIEZ	zo co	NE PE	NETF	10ITAS	N TEST	
	Cround Los	. ISIC	0 m CD	223000.0	JUN					Eilo Nor	-101.	30/	20124											CP	TI I OF	;		
	Cone & Rig	Used: S1			13					Checke	Bv:	114	20134 - 0				SITE	e inv	'ES	TIGA		l		01	10 00	,		
	Remarks:	Toet		n total pre						CHECKEL	<i>_y</i> .	R	hh					ins	itus	si.cor	n						Forr	n: CPT0004

		- Correc	ted Cone	End Resig	stance, qt ((MPa)	12	14	16	19 20		0 50	Deri	ved Shear	Strength,	Su (kPa)	250	200	0	Derived	Relative De	ensity, Dr (%)	80	100		
		<u>++++++++</u>	, ++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++	-+ 	-+++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	++ +++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++		1		·····	Derived Sh	ear Strend	utuuuu hisu Nk	d = 15 (kP		L		+0					
	0	50 10 Sleeve)0 1 Friction, f	50 : fs (kPa)	200	250 3	300 3	350 4	400 4	150 500)		i	Derived Sh	ear Streng	gth, Su Nk	a = 10 (kP	a)						Estir (based on	nated Soil T Robertson e	/pe t. al. (1986))
0.0	ſ										0							0								-0
	\$																									ы С
1.0					-	-	-				1							1								b ent
																										itle
2.0						-					2							2	1					-		-2
3.0	1			<u> </u>	+	+					3							3						_		³ Z O
	1											((EEE	E A
4.0	<u>}</u>			<u> </u>	+	+	+				4						-	4	1					_		⁴ PC
																									E	DR'A
5.0	- <u> </u>				+						5							- 5	<u> </u>					_	E-E-E	.5 O T O
	~											5													-X::X::X	ŤΕ
6.0											6							- 6						_		
																										Į
€ 7.0°	1			<u> </u>		<u> </u>					7						_	7	1	_				_		$_7 \stackrel{A}{\prec} \stackrel{I}{\underline{Z}}$
oth (r											-															S
0 8.0]		L	<u> </u>	<u> </u>		<u> </u>				8							8								-8
9.0	1		L								9							9	1							- 9
0.0																										Ū.
10.0	-										10							10	1							10
10.0											10							10								10
11.0	-										11 -							11								- 11
12.0											12							12	1							- 12
13.0	1					-					13							13	1							- 13
14.0	1										14							14	1					-		- 14
15.0	Location:	GAL	WAY							Date of Test:	15 1 2	22/03/2012						15	1						LE	- 15
	Coordinate	es: 1302	228.000E -	· 223305.C)00N					Date of Plot:	3	30/03/2012									PIEZO	CONE F	PENETF	RATION	ITEST	
	Ground Le	evel: -6.4) m CD							File Name:	1	1120134 - CF	70 UT			SITE						C	PTU 07	7		
	Cone & Ri	ig Used:S1)-CFIP.742	2 - CPT 00)3					Checked By:		N.h.h.				GIL	ing	situs	si com						Form	
	Remarks:	Test	refused o	n total pre	assure.													nuc		•					Form	CP10004

APPENDIX F

Laboratory test results

Moisture content, Atterberg Limits & Particle Density Tests 3.2, 4.3, 5.3 & 8.3 of BS 1377 : Part 2 : 1990

Sheet 1 of 2

EH	Sarr	nple	San	nple	Moisture	Passing	Liquid	Plastic	Plasticity	Casagrande Classification	Particle
		No.	at (m)	to (m)	(%)	Sieve (%)	(%)	(%)	(%)	classification	(Mg/m^3)
BH01	D	1	0.00		48						(
BH01	D	2	1.00		50	99	36	NP	NP		
BH01	D	3	2.00		65	98	37	NP	NP		
BH01	Р	5	3.00	3.80	82	98	84	43	41	MV	
BH01	D	6	5.00		54						
BH01	Р	7	5.00	5.75	38	99	46	30	16	MI	
BH02	D	1	0.00		43						
BH02	D	2	1.00		52	99	42.8	NP	NP		
BH02	В	4	2.50		10	56	17	11	6	NP	
BH02	D	5	3.00		10						
BH03	D	1	0.00		57						
BH03	D	3	2.00		60						
BH03	Р	6	4.00	4.90	49	99	42	29	13	MI	
BH03	Р	9	6.00	6.60	38	99	34	22	12	CL	
BH03	В	11	8.00		11	50.9	15	12	3	NP	
BH04	D	1	0.00		46						
BH04	В	5	3.00		50	99	44	28	16	MI	
BH04	D	9	6.00		52	99	44	29	15	MI	
BH04	D	10	7.50		52						
BH04	D	14	11.00		25	99	44	27	17	MI/CI	
BH05	D	1	0.00		69						
BH05	D	3	2.00		56						
BH05	Р	5	3.00	3.90	62	99	42	28	14	MI	
BH05	D	7	5.00		58	98	43	28	15	MI	
BH05	В	13	8.50		1	46	No	test: G	RAVEL		
BH06	D	1	0.00		53	100	42	27	15	MI	
BH06	D	4	3.00		47						
BH06	Р	5	3.00	3.90	46	99	38	26	12	MI	
BH06	D	7	5.00		44	100	38	23	15	CI	
BH06	В	9	6.80	7.00	113						
BH06	В	11	8.00		21	81.7	31	20	11	CL	
BH07	D	1	0.00		67						
BH07	D	2	1.00		65	99	42	NP	NP		
BH07	D	6	4.00		62	99	37	25	12	MI/CI	
BH07	D	10	6.60		81						

NP non-plastic soil

\$ Insufficient material for Limits tests.

Contract: New Port of Galway Job No.:12-161

Moisture content, Atterberg Limits & Particle Density Tests 3.2, 4.3, 5.3 & 8.3 of BS 1377 : Part 2 : 1990

EH	Sam	nla	San	nple	Moisture	Passing	Liquid	Plastic	Plasticity	Casagrande	Particle
No.	Sall	ipie	Dep	oth	Content	425µm	Limit	Limit	Index	Classification	Density
	Туре	No.	at (m)	to (m)	(%)	Sieve (%)	(%)	(%)	(%)		(Mg/m ³)
BH07	В	12	7.00		2		No	test: G	RAVEL		
BH07	D	11	7.00		3						
BH08	D	2	1.00		38	99	44	21	23	CI	
BH08	D	6	4.00		38.7	99	44	20	24	CI	
BH08	D	8	6.00		34	99	41	21	20	CI	
BH08	D	11	8.00		36.3						

Sheet 2 of 2

Causeway Geotech Ltd

BS1377:1990 Part 2 Clause 9.2 and 9.5

Causeway Geotech Ltd

Darticla ciza	- 		sedimenta	tion			sieve s	sizes (mm)				
ו מו רורור זודר	ę .					(() <u>~~~</u>				
(mm) 175	assing			£90°0	0.150 0.212 0.300	0.425 24,0	81"1	56.6 2	5 5.3 5	0c †∣	28 37.5 5.75	06 52 89
7	3	100								Ī		
90	<u>1</u> 0											
75	100	0										
63	100	06										
50	100											
37.5	100	80										
28	100	1										
ę	007											
14	<u>3</u> 8	70										
10	100											
6.3	100	60										
2	100))										
3.35	100		0000									
6	le E	00										
1.18	001											
0.6	100	40										
0.425	100		_									
0.3	100	30										
0.212	100	2										
0.15	66											
0.063	98	20										
0.0338	90.2											
0.0175	74.7	10										
0.0094	52.9											
0.0054	31.1	<										
0.0032	12.4			Ċ		() orie						
0.0016	0.0	0.001	0.01	0.1	parucie	size (mm)	-		10			
			11. 19. Cilt 049.	fine	, mec	dium	coarse	fine	med	ium	coarse	Cobbles
		ן נ			San	d 2%			Grave	v 0%		%0
		Project: N	Jew Port of Galway	Exploratory		Sam	ple	Sample				
				Hole No.: BHO	14 Type	.oN	at (m) to	(m) descrip	tion:			
		Job No.:	12-161			14	11.00	_				

Causeway Geotech Ltd

Particle Size Distribution

Size
<u>e</u>
Ĕ
Pal

- L
Ţ
i n
-
\square
<u> </u>
N
15
U
 1
<u> </u>
U
- Ē
+
20
<u>a</u>

Causeway Geotech Ltd

Particle Size Distribution

Causeway Geotech Ltd

Particle Size Distribution

Location&Ref	Galway			
Borehole/sample no.	BH01			
Depth	3m			
Soil type	Grey silty clay			
Sampling	U			
Stage No.		1	2	1
Diameter	mm	100		
Height	mm	180		
Initial moisture content	%	80.2	80.2	80.2
Initial bulk density	kg/m3	1555	1555	1555
Dry density	kg/m3	863	863	863
Cell pressure	kPa	50	100	150
Rate of strain	%/min	1.00	1.00	1.00
	ONDITIONS AT FA	AILURE	Contraction of the State	din ang Ra
Mem. and side drains corrections	kPa	3		
Maximum deviator stress	kPa	55	52	42
cu			24 kPa	
Mode of failure			Bulging	

.

Figure 1 Deviator stress vs axial strain

Ref	Galway
BH	BH01
Depth	3m
Test	Unconsolidated Undrained

Unconsolidated Undrained test (BS137	7:1990 7/8)	PROFILE SALES	Mar Marine I	A STREET
Location&Ref	Galway			
Borehole/sample no.	BH01			
Depth	5m			
Soil type	Grey silty clay			
Sampling	U			
Stage No.		1	2	3
Diameter	mm	100		
Height	mm	180		
Initial moisture content	%	59.0	59.0	59.0
Initial bulk density	kg/m3	1497	1497	1497
Dry density	kg/m3	941	941	941
Cell pressure	kPa	50	100	150
Rate of strain	%/min	1.00	1.00	1.00
C	ONDITIONS AT FA	AILURE		none V.Ce
Mem. and side drains corrections	kPa	3		
Maximum deviator stress	kPa	19	20	22
cu			9 kPa	
Mode of failure	Bulging			
Checked and approved by V Sivakuma	ır			

×

Figure 1 Deviator stress vs axial strain

Ref	Galway
BH	BH01
Depth	5m
Test	Unconsolidated Undrained

Unconsolidated Undrained test (BS137	7:1990 7/8)	1 g Y my Phyl & H		RIAMOR
Location&Ref	Galway			
Borehole/sample no.	BH03			
Depth	4m			
Soil type	Grey silty clay	7		
Sampling	U			
Stage No.		1	2	3
Diameter	mm	100		
Height	mm	200		
Initial moisture content	%	67.9	67.9	67.9
Initial bulk density	kg/m3	1578	1578	1578
Dry density	kg/m3	939	939	939
Cell pressure	kPa	50	100	150
Rate of strain	%/min	1.00	1.00	1.00
C	ONDITIONS AT FA	AILURE	the strength of the	R. Jones
Mem. and side drains corrections	kPa	3		
Maximum deviator stress	kPa	41	41	45
cu	20 kPa			
Mode of failure	Bulging			
Checked and approved by V Sivakum:	ar			

Figure 1 Deviator stress vs axial strain

Ref	Galway
BH	BH03
Depth	4m
Test	Unconsolidated Undrained

Location&Ref	Galway			
Borehole/sample no.	BH04			
Depth	3m			
Soil type	Grey silty clay	r		
Sampling	U			
Stage No.		1	2	
Diameter	mm	100		
Height	mm	200		
Initial moisture content	%	48.8	48.8	48.8
Initial bulk density	kg/m3	1790	1790	179
Dry density	kg/m3	1203	1203	1203
Cell pressure	kPa	50	100	15
Rate of strain	%/min	1.00	1.00	1.0
C	ONDITIONS AT FA	AILURE		news
Mem. and side drains corrections	kPa	3		
Maximum deviator stress	kPa	17	17	1:
cu	7 kPa			
Mode of failure	Bulging			

Figure 1 Deviator stress vs axial strain

Ref	Galway
BH	BH04
Depth	3m
Test	Unconsolidated Undrained

Galway			
BH04			
5m			
Grey silty clay			
U			
	1	2	
mm	100		
mm	180		
%	50.9	50.9	
kg/m3	1753	1753	
kg/m3	1162	1162	
kPa	50	100	
%/min	1.00	1.00	
DNDITIONS AT FA	AILURE	N. R. William K. Frank	St 12 - 1
kPa	3		
kPa	10	12	
9 kPa			
Bulging			
	Galway BH04 5m Grey silty clay U U kg/m3 kg/m3 kg/m3 kPa %/min DNDITIONS AT F4 kPa kPa	Galway BH04 5m Grey silty clay U 1 mm 100 mm 180 % 50.9 kg/m3 1753 kg/m3 1162 kPa 50 %/min 1.00 DNDITIONS AT FAILURE kPa 10	Galway BH04 5m Grey silty clay U nm 1 1 2 nm 100 mm 180 % 50.9 kg/m3 1753 kg/m3 1162 kPa 50 %/min 1.00 0 1.00 0 12

Figure 1 Deviator stress vs axial strain

Ref	Galway
BH	BH04
Depth	5m
Test	Unconsolidated Undrained

Location&Ref	Galway			
Borehole/sample no.	BH06			
Depth	3m			
Soil type	Grey silty clay			
Sampling	U			
Stage No.		1	2	3
Diameter	mm	100		
Height	mm	200		
Initial moisture content	%	40.6	40.6	40.0
Initial bulk density	kg/m3	1778	1778	1778
Dry density	kg/m3	1265	1265	1265
Cell pressure	kPa	50	100	150
Rate of strain	%/min	1.00	1.00	1.00
C	ONDITIONS AT FA	ILURE		
Mem. and side drains corrections	kPa	3		
Maximum deviator stress	kPa	18	18	19
cu	8 kPa			
Mode of failure	Bulging			

Figure 1 Deviator stress vs axial strain

RefGalwayBHBH06Depth3mTestUnconsolidated Undrained

7

Unconsolidated Undrained test (BS137	7:1990 7/8)	NU STRAINS		215 114
Location&Ref	Galway			
Borehole/sample no.	BH07			
Depth	3m			
Soil type	Grey clay			
Sampling	U			
Stage No.	T	1	2	3
Diameter	mm	100		
Height	mm	200	1	
Initial moisture content	%	57.2	57.2	57.2
Initial bulk density	kg/m3	1773	1773	1773
Dry density	kg/m3	1127	1127	1127
Cell pressure	kPa	50	100	150
Rate of strain	%/min	1.00	1.00	1.00
C	ONDITIONS AT FA	ILURE		THE DAY
Mem. and side drains corrections	kPa	3		
Maximum deviator stress	kPa	46	45	40
cu	21 kPa			
Mode of failure	Bulging			
Checked and approved by V Sivakuma	ır			

Figure 1 Deviator stress vs axial strain

Ref	Galway
BH	BH07
Depth	3m
Test	Unconsolidated Undrained

Vane stregth				
BH No	Depth m	Stregth kPa		
BH04	5	10		
BH05	6	22		
BH06	3	14		
BH07	5	32		
BH04	3	16		
BH05	3	15		
BH03	4	26		

Consolidated undrained multistage triaxia	al test with pore wat	ter pressure measu	irements		
Tested in accordance with BS:1377 Part 8	•				
Location	Galway				
Job Ref	Galway				
Borehole No	BH03	BH03			
Depth	6m	6m			
Soil type	Soft grey Cla	ay			
Sampling	U100	U100			
INITIAL CONDITIONS					
Stage No.		1	2	3	
Diameter	mm	100			
Height	mm	200			
Initial Moisture content	%	52.0			
Initial Bulk density	kg/m3	1695			
Initial dry density	kg/m3	1115			
Specific Gravity		2.6			
	SATURATION	STAGE			
Initial cell pressure	kPa	50			
Initial B value		<0.95			
Back pressure applied	kPa	300			
Period of saturation	h	24			
Final B value	kPa	1			
	CONSOLIDATIO	N STAGE			
Cell pressure	kPa	346	399	500	
Back pressure	kPa	302	300	205	
Effective consolidation pressure	kPa	44	99	295	
Drainage conditions	S/F/T/B				
Period of consolidation	h	69	51	71	
Water content after consolidation%		41.3	36.8	32.2	
Void ratio		1.075	0.956	0.837	
		10070		0.001	
Total cell pressure	kPa	346	399	500	
Rate of strain	%/h	0.15	0.16	0.21	
Period of compression	h	47	70	48	
	CONDITIONS AT	FAILURE		10	
Mem. and side drains corrections	kPa	3	3	3	
Maximum deviator stress	kPa	42	100	224	
Pore water pressure	kPa	333	368	424	
Change in pore water pressure	kPa	30.0	68.0	127.0	
Strain at failure	·- %	7.1	11.5	10.2	
Minor principal total stress	kPa	346	399	500	
Major principal total stress	kPa	388	499	724	
Minor principal effective stress	kPa	13	31	76	
Major principal effective stress	kPa	55	131	300	
	ini u		101	500	
Ar		0.71	0.68	0.57	
c' (kPa)			0		
φ' (degrees)			ů.		
Critical o' (degrees)			35		
Test carried out and checked by VS (OUE	B)		50		

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH03, Depth 6m

Figure 1 Consolidation: Volume change vs square root time

Figure 2 Degree of consolidation vs log time

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH03, Depth 6m

Figure 4 Pore water pressure vs axial strain

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH03, Depth 6m

Figure 5 Stress ratio vs axial strain

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH03, Depth 6m

Figure 6 Deviator stress vs mean effective (stress paths)

Figure 7 t' vs s' (stress paths)

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH03, Depth 6m

Figure 8 Change in pore water pressure vs change in mean stress

Figure 9 Deviator stress q vs mean effective stress at failure

Consolidated undrained multistage triaxia	al test with pore wa	ter pressure measu	irements		
Tested in accordance with BS:1377 Part 8	1				
Location	Galway	Galway			
Job Ref	Galway				
Borehole No	BH05	BH05			
Depth	6m	6m			
Soil type	Soft grey Cla	Soft grey Clay			
Sampling	U100	U100			
	INITIAL COND	ITIONS			
Stage No.		1	2	3	
Diameter	mm	100			
Height	mm	200			
Initial Moisture content	%	56.2			
Initial Bulk density	kg/m3	1668			
Initial dry density	kg/m3	1068			
Specific Gravity	8'	2.6			
	SATURATION	STAGE			
Initial cell pressure	kPa	50			
Initial B value	ni u	<0.95			
Back pressure applied	kPa	300			
Period of saturation	h	24			
Final R value	n kPa	1			
Cell pressure	kPa	354	403	503	
Back pressure	kPa	303	301	205	
Effective consolidation pressure	kPa	51	102	205	
Drainage conditions	S/F/T/B	51	102	270	
Dramage concitions	b	72	10	70	
Water content after consolidation%	п	12	ر ب 12 ع	34.8	
Void ratio		1 207	42.3	0.004	
		1.207	1,100	0.904	
Total call proceura	k Do	354	103	503	
Pote of strein	кга 0/ /ь	0.10	403	505	
Rate of strain	70/11 b	0.10	0.10	0.19	
Period of compression	II CONDITIONS AT		70	40	
Mam and side during connections	L'Do	TAILUKE 2	2	3	
Mem. and side drains corrections	KPa LD-	3 45	3	3	
Maximum deviator stress	KPa LD	45	85	219	
Pore water pressure	KPa LD	341	381	434	
Change in pore water pressure	kPa a	36.0	81.0	230.0	
Strain at failure	% 1 D	5.6	11.5	9.1	
Minor principal total stress	kPa	354	403	503	
Major principal total stress	kPa	399	488	722	
Minor principal effective stress	kPa	13	22	69	
Major principal effective stress	kPa	58	107	288	
A -		0.80	0.95	1.05	
 c' (kPa)		0.00	0.95	1.05	
ر (he u) ه' (degrees)			0		
ψ (ucgi ccs) Critical d' (dagraas)			26		
CITICAL & (UCEICCS) Test carried out and checked by VS (OUR	R)				
Test carried out and checked by VS (QUB	•)				

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 6m

Figure 1 Consolidation: Volume change vs square root time

Figure 2 Degree of consolidation vs log time

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 6m

Figure 4 Pore water pressure vs axial strain

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 6m

Figure 5 Stress ratio vs axial strain
Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 6m

Figure 6 Deviator stress vs mean effective (stress paths)

Figure 7 t' vs s' (stress paths)

Figure 8 Change in pore water pressure vs change in mean stress

Figure 9 Deviator stress q vs mean effective stress at failure

Consolidated undrained multistage triaxia	al test with pore wat	er pressure measu	urements				
Tested in accordance with BS:1377 Part 8							
Location	Galway	Galway					
Job Ref	Galway	Galway					
Borehole No	BH05	BH05					
Depth	3m						
Soil type	Very soft dan	rk grey clayey silt					
Sampling	U100						
	INITIAL COND	ITIONS					
Stage No.		1	2	3			
Diameter	mm	100					
Height	mm	200					
Initial Moisture content	%	35.8					
Initial Bulk density	kg/m3	1806					
Initial dry density	kg/m3	1330					
Specific Gravity	0	2.6					
L U	SATURATION	STAGE					
Initial cell pressure	kPa	50					
Initial B value		<0.95					
Back pressure applied	kPa	300					
Period of saturation	h	24					
Final B value	n kPa	1					
	CONSOLIDATIO	N STAGE					
Cell pressure	kPa	348	401	503			
Back pressure	kPa	300	303	303			
Effective consolidation pressure	ki a kPa	48	98	200			
Drainage conditions	S/F/T/B	-0	70	200			
Dramage conditions Period of consolidation	b	57	45	40			
Water content after consolidation%		26.6	נ י ר 22 ג	18 5			
Void ratio		20.0	0.570	0.482			
		0.071	0.579	0.402			
Total call processo	l Do	2/9	401	503			
Pote of strain	кга 0/ Љ	0.12	401	505			
Rate of strain	%0/11 b	0.12	0.12	0.13			
Period of compression	II CONDITIONS AT		00	90			
Mam and side duoing connections		FAILUKE	2	3			
Movimum dovictor stress	кга 1-D-	3	3	J 100			
Maximum deviator stress	KPa LD	40	88	180			
Pore water pressure	KPa LD	334	372	440			
Change in pore water pressure	kPa	34.0	68.0	137.0			
Strain at failure	%	6	8.2	12			
Minor principal total stress	kPa	348	401	503			
Major principal total stress	kPa	388	489	683			
Minor principal effective stress	kPa	14	29	63			
Major principal effective stress	kPa	54	117	243			
A .		0.85	0.77	0.76			
 c' (kPa)		0.00	0.77 N	0.70			
ر (مد بر) ه' (degrees)			0				
ψ (ucgites) Critical d' (dagraas)			24				
CITUCALY (UCGICCS) Test carried out and checked by VS (OUR	3)		54				
Test carried out and checked by v S (QUB	<i>י</i> ן						

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 3m

Figure 1 Consolidation: Volume change vs square root time

Figure 2 Degree of consolidation vs log time

Figure 4 Pore water pressure vs axial strain

Figure 5 Stress ratio vs axial strain

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 3m

Figure 6 Deviator stress vs mean effective (stress paths)

Figure 7 t' vs s' (stress paths)

Figure 8 Change in pore water pressure vs change in mean stress

Figure 9 Deviator stress q vs mean effective stress at failure

Consolidated undrained multistage triaxial	l test with pore wa	ter pressure measu	irements				
Tested in accordance with BS:1377 Part 8							
Location	Galway	Galway					
Job Ref	Galway	Galway					
Borehole No	BH03	BH03					
Depth	4m	4m					
Soil type	Very soft da	rk grey clayey silt					
Sampling	U100						
	INITIAL COND	ITIONS					
Stage No.		1	2	3			
Diameter	mm	100					
Height	mm	200					
Initial Moisture content	%	19.5					
Initial Bulk density	kg/m3	1590					
Initial dry density	kg/m3	1330					
Specific Gravity	8,	2.6					
	SATURATION	STAGE					
Initial cell pressure	kPa	50					
Initial B value		<0.95					
Back pressure applied	kPa	300					
Period of saturation	h	24					
Final R value	n kPa	1					
	CONSOLIDATIO	N STACE					
Call prossure	kPo	3/0	/01	500			
Cell pressure	KI A IzDo	208	401	300			
Effective consolidation prossure	KI A IzDo	230 51	270 102	303 107			
Drainage conditions	кга S/E/T/D	51	105	197			
Dramage conditions	5/F/1/D h	53	10	11			
Period of consolidation Water content often consolidation 0/	<u> </u>	55	40	44			
Water content after consolidation %		14./	10.9	0.9			
		0.382	0.284	0.179			
T-4-1	L.D.	240	401	500			
1 otal cell pressure	kPa	349	401	500			
Rate of strain	%o/h	0.10	0.10	0.08			
Period of compression	h	51	66	90			
	CONDITIONS AT	FAILURE	2	2			
wiem. and side drains corrections	кРа	3	3	3			
Maximum deviator stress	kPa	70	104	168			
Pore water pressure	kPa	336	372	470			
Change in pore water pressure	kPa	38.0	74.0	172.0			
Strain at failure	%	5	6.4	6.8			
Minor principal total stress	kPa	349	401	500			
Major principal total stress	kPa	419	505	668			
Minor principal effective stress	kPa	13	29	30			
Major principal effective stress	kPa	83	133	198			
A _f		0.54	0.71	1.02			
c' (kPa)			0				
φ' (degrees)							
Critical \oplus' (degrees)			38				
Test carried out and checked by VS (\overline{QUB})							

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH03, Depth 4m

Figure 1 Consolidation: Volume change vs square root time

Figure 2 Degree of consolidation vs log time

Figure 3 Deviator stress vs axial strain

Figure 4 Pore water pressure vs axial strain

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH03, Depth 4m

Figure 5 Stress ratio vs axial strain

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH03, Depth 4m

Figure 6 Deviator stress vs mean effective (stress paths)

Figure 7 t' vs s' (stress paths)

Figure 8 Change in pore water pressure vs change in mean stress

Figure 9 Deviator stress q vs mean effective stress at failure

Consolidated undrained multistage triaxis	al test with pore wat	ter pressure measu	irements				
Tested in accordance with BS:1377 Part 8		4 4 4 4 P 26 4					
Location	Galway	Galway					
Job Ref	Galway	Galway					
Borehole No	BH05	BH05					
Depth	6m	6m					
Soil type	Soft grey Cla	ny					
Sampling	U100						
The second second second second second	INITIAL COND	ITIONS					
Stage No.		1	2	3			
Diameter	mm	100	12-3-				
Height	mm	200					
Initial Moisture content	%	56.2					
Initial Bulk density	kg/m3	1668					
Initial Bulk density	kg/m3	1068					
Specific Gravity	ngi me	2.6					
opeene orang	SATURATION	STAGE		and Manhatta 200			
Initial cell pressure	kPa	50					
Initial B value	M 4	<0.95					
Back pressure applied	kPa	300					
Pariod of saturation	h	24					
Final D value	n kDo	1					
	CONSOLIDATIO	NSTACE	the second second	100 A 100			
C-III	LERA	1 31AGE 354	403	503			
Cen pressure	KF A	303	403	205			
Back pressure	KPa LD-	505	102	203			
Effective consolidation pressure	KPa C/E/E/D	51	102	298			
Drainage conditions	S/F/1/B		10	70			
Period of consolidation	h	72	49	70			
Water content after consolidation%		46.4	42.3	34.8			
Void ratio		1.207	1.100	0.904			
			103	503			
Total cell pressure	kPa	354	403	503			
Rate of strain	%/h	0.10	0.16	0.19			
Period of compression	h	54	70	48			
	CONDITIONS AT	FAILURE					
Mem. and side drains corrections	kPa	3	3	3			
Maximum deviator stress	kPa	45	85	219			
Pore water pressure	kPa	341	381	434			
Change in pore water pressure	kPa	36.0	81.0	230.0			
Strain at failure	%	5.6	11.5	9.1			
Minor principal total stress	kPa.	354	403	503			
Major principal total stress	kPa	399	488	722			
Minor principal effective stress	kPa	13	22	69			
Major principal effective stress	kPa	58	107	288			
		0.00	0.07	1.02			
		0.80	0.95	1.05			
C (KPA)							
¢' (degrees)			27				
Critical of (degrees)							
lest carried out and checked by VS (QUI	5)						

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 6m

Figure 1 Consolidation: Volume change vs square root time

Figure 2 Degree of consolidation vs log time

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 6m

Figure 3 Deviator stress vs axial strain

Figure 4 Pore water pressure vs axial strain

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 6m

Figure 5 Stress ratio vs axial strain

Figure 6 Deviator stress vs mean effective (stress paths)

Figure 7 t' vs s' (stress paths)

Consolidated Undrained Multistage Triaxial Test With Pore Water Pressure Measurements Ref 12-161, BH05, Depth 6m

Figure 8 Change in pore water pressure vs change in mean stress

Figure 9 Deviator stress q vs mean effective stress at failure

Queen's University Belfast

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH01
Sample number	
Depth m	1.0
Soil type	Very sofy sandy silty clay (D)
Test	1 D Consolidation

Wet mass (i) g	152
Wet mass (f) g	137.1
Dry mass g	100.8
Water content (i) %	50.8
Water content (f) %	36.0
Bulk density kg/m3	1792.9
Dry density kg/m3	1189.0

Diameter mm	75	
Initial Height mm	19.2 Specific gravity	2.6

σ'v kPa	∆H mm	H mm	V cm3	Vv cm3	е	l og (σ'ν)	Compressibility m2/MN	Cv m2/year
6	0.749	18.451	81.473	43.435	1.142	0.78		2.37
12	0.166	18.285	80.740	42.702	1.123	1.08	1.50	0.37
25	0.262	18.023	79.585	41.547	1.092	1.40	1.10	0.57
50	0.319	17.704	78.174	40.137	1.055	1.70	0.71	0.43
100	0.358	17.346	76.594	38.557	1.014	2.00	0.40	0.52
200	0.414	16.932	74.766	36.729	0.966	2.30	0.24	0.50
100	-0.024	16.956	74.870	36.832	0.968	2.00	0.01	1.28

Square root time (min)

σ'_v = 12.5kPa

Queen's University Belfast

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH01
Sample number	
Depth m	2.0
Soil type	Very sofy silty clay (D)
Test	1 D Consolidation

Wet mass (i) g	134.5
Wet mass (f) g	111.4
Dry mass g	78.4
Water content (i) %	71.6
Water content (f) %	42.1
Bulk density kg/m3	1586.5
Dry density kg/m3	924.7

Diameter mr	n	75					
Initial Height	mm	19.2	Specific gra	avity	2.6		
σ'v kPa	∆H mm	Hmm	V cm3	Vv cm3	e	log(ơ'v)	Compressibility m2/MN
6	0.603	18.597	82.119	51.965	1.723	0.78	
12	0.305	18.292	80.772	50.618	1.679	1.08	2.73
25	0.709	17.583	77.639	47.486	1.575	1.40	2.98
50	0.721	16.862	74.458	44.304	1.469	1.70	1.64
100	0.777	16.085	71.027	40.873	1.355	2.00	0.92
200	0.842	15.244	67.310	37.156	1.232	2.30	0.52
400	0.789	14.455	63.828	33.674	1.117	2.60	0.26
50	-0.375	14.830	65.482	35.328	1.172	1.70	0.07

Cv m2/year

0.29 0.26

0.36 0.68

-0.10

-0.05

0.00

Queen's University Belfast

.

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH01
Sample number	
Depth m	3.0
Soil type	Very soft grey caly
Test	1 D Consolidation

Wet mass (i) g	137
Wet mass (f) g	123.9
Dry mass g	80.3
Water content (i) %	70.6
Water content (f) %	54.3
Bulk density kg/m3	1551.3
Dry density kg/m3	909.3

Diameter mm	75	
Initial Height mm	20 Specific gravity	2.6

σ'v kPa	∆H mm	Hmm	V cm3	Vv cm3	e	l og(σ' ν)	Compressibility m2/MN	Cv m2/year
6	0.139	19.862	87.701	57.399	1.894	0.78		0.36
12	0.182	19.680	86.898	56.596	1.868	1.08	1.53	0.36
25	0.238	19.442	85.849	55.548	1.833	1.40	0.93	0.29
50	0.530	18.912	83.508	53.206	1.756	1.70	1.09	0.33
100	1.019	17.893	79.011	48.709	1.607	2.00	1.08	0.29
200	1.450	16.443	72.606	42.304	1.396	2.30	0.81	0.25
100	-0.125	16.568	73.159	42.857	1.414	2.00	0.08	0.48

σ'_v = 12.5kPa

Queen's University Belfast

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH01
Sample number	
Depth m	5.0
Soil type	Very sofy silty clay
Test	1 D Consolidation

Geotechnical Testing Station

Wet mass (i) g	139.8
Wet mass (f) g	119
Dry mass g	80.5
Water content (i) %	73.7
Water content (f) %	47.8
Bulk density kg/m3	1583.0
Dry density kg/m3	911.5

Diameter mm	75	
Initial Height mm	20 Specific gravity	2.6

σ'v kPa	∆H mm	Hmm	V cm3	Vv cm3	e	l og (σ' ν)	Compressibility m2/MN	Cv m2/year
6	0.225	19.775	87.320	56.358	1.820	0.78		0.68
12	0.287	19.488	86.051	55.089	1.779	1.08	2.42	0.42
25	0.485	19.003	83.911	52.950	1.710	1.40	1.91	0.40
50	0.681	18.322	80.904	49.942	1.613	1.70	1.43	0.31
100	1.019	17.303	76.404	45.442	1.468	2.00	1.11	0.23
200	1.400	15.903	70.223	39.261	1.268	2.30	0.81	0.20
400	1.391	14.513	64.082	33.121	1.070	2.60	0.44	0.19
50	-0.768	15.281	67.474	36.512	1.179	1.70	0.15	0.41

σ'_v = 12.5kPa

1

σ'_v =200 kPa

Queen's University Belfast

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH03
Sample number	
Depth m	4.0
Soil type	Soft grey silty Clay
Test	1 D Consolidation

Wet mass (i) g	141
Wet mass (f) g	129.4
Dry mass g	93
Water content (i) %	51.6
Water content (f) %	39.1
Bulk density kg/m3	1663.1
Dry density kg/m3	1097.0

Diameter mm	75	
Initial Height mm	19.2 Specific gravity	2.6

σ'v kPa	∆H mm	Hmm	V cm3	Vv cm3	е	l og (σ'ν)	Compressibility m2/MN	Cv m2/year
6	0.069	19.131	84.474	49.379	1.407	0.78		0.34
12	0.292	18.839	83.186	48.092	1.370	1.08	2.54	0.33
25	0.546	18.293	80.775	45.681	1.302	1.40	2.23	0.37
50	0.589	17.704	78.172	43.078	1.227	1.70	1.29	0.35
100	0.749	16.955	74.866	39.771	1.133	2.00	0.85	0.32
200	0.879	16.076	70.986	35.892	1.023	2.30	0.52	0.29
100	-0.034	16.110	71.136	36.042	1.027	2.00	0.02	0.59

Square root time (min)

σ'_v = 12.5kPa

t.

Queen's University Belfast

ž

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH03
Sample number	
Depth m	6.0
Soil type	Very sofy silty clay
Test	1 D Consolidation

Wet mass (i) g	137.1
Wet mass (f) g	115
Dry mass g	83.1
Water content (i) %	65.0
Water content (f) %	38.4
Bulk density kg/m3	1617.1
Dry density kg/m3	980.2

Diameter mr	n	75				
Initial Height mm		19.2	19.2 Specific gravity		2.6	
o'v kPa	AH mm	lu mm	V om2	Vy om3	0	[00(σ'V)
OVRIA			v cilis	VV CIIIS	e	109(01)
6	1.036	18.165	80.208	48.246	1.510	0.78
12	0.404	17.761	78.426	46.464	1.454	1.08
25	0.648	17.113	75.563	43.602	1.364	1.40
50	0.768	16.345	72.173	40.212	1.258	1.70
100	0.834	15.511	68.490	36.528	1.143	2.00

64.572

60.816

62.873

32.610

28.854

30.912

1.020

0.903

0.967

2.30

2.60

1.70

14.623

13.773

14.239

0.887

0.851

-0.466

200

400

50

Compressibility m2/MN

3.70

2.81 1.79

1.02

0.57

0.29

0.10

Cv m2/year 0.26

0.24 0.23

0.21

0.22

0.24

0.26

0.35

σ'_v = 12.5kPa

Queen's University Belfast

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH04
Sample number	
Depth m	3.0
Soil type	Very soft grey caly
Test	1 D Consolidation

Wet mass (i) g	137
Wet mass (f) g	117.3
Dry mass g	83
Water content (i) %	65.1
Water content (f) %	41.3
Bulk density kg/m3	1615.9
Dry density kg/m3	979.0

Diameter mm	75	
Initial Height mm	19.2 Specific gravity	2.6

σ ′ν kPa	∆H mm	Hmm	V cm3	Vv cm3	e	l og (σ' ν)	Compressibility m2/MN	Cv m2/year
6	0.012	19.188	84.726	53.405	1.705	0.78		
12	0.214	18.974	83.781	52.460	1.675	1.08	1.86	0.50
25	0.530	18.443	81.439	50.118	1.600	1.40	2.15	0.26
50	1.124	17.319	76.474	45.153	1.442	1.70	2.44	0.23
100	1.095	16.224	71.638	40.318	1.287	2.00	1.26	0.29
200	0.981	15.243	67.306	35.986	1.149	2.30	0.60	0.21
100	-0.084	15.327	67.677	36.356	1.161	2.00	0.06	0.41

10 20 30 40 50 0 0.00 σ'_v =100kPa 0.20 0.40 Settlement (mm) 0.60 0.80 1.00 1.20 1.40 Square root time (min)

Square root time (min)

Queen's University Belfast

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH04
Sample number	
Depth m	5.0
Soil type	Very sofy silty clay
Test	1 D Consolidation

Wet mass (i) g	150.3
Wet mass (f) g	134
Dry mass g	98.3
Water content (i) %	52.9
Water content (f) %	36.3
Bulk density kg/m3	1772.8
Dry density kg/m3	1159.5

Diameter mr	n	75					
Initial Height	mm	19.2	Specific gravity		2.6	1	
σ'v kPa	∆H mm	H mm	V cm3	Vv cm3	e	l og(σ'ν)	Compressibility m2/MN
6	0.716	18.484	81.620	43.812	1.159	0.78	
12	0.307	18.178	80.265	42.457	1.123	1.08	2.77
25	0.476	17.702	78.164	40.356	1.067	1.40	2.01
50	0.543	17.158	75.764	37.956	1.004	1.70	1.23
100	0.684	16.474	72.744	34.936	0.924	2.00	0.80
200	0.685	15.789	69.718	31.910	0.844	2.30	0.42
50	-0.173	15.962	70.484	32.676	0.864	1.70	0.07
						Í	

Cv m2/year 0.38

0.26 0.21 0.33

0.37 0.34 0.58

0 10 20 30 40 50 0.00 σ'_v =100kPa 0.10 0.20 Settlement (mm) 0.30 0.40 0.50 0.60 0.70 0.80 Square root time (min) 0 10 20 30 40 50 0.00

Queen's University Belfast

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH04
Sample number	
Depth m	9.0
Soil type	Very sofy silty clay (D)
Test	1 D Consolidation

Wet mass (i) g	154
Wet mass (f) g	135
Dry mass g	100
Water content (i) %	54.0
Water content (f) %	35.0
Bulk density kg/m3	1816.5
Dry density kg/m3	1179.5

Diameter mm	75		
Initial Height mm	20	Specific gravity	2.6

σ'v kPa	∆H mm	H mm	V cm3	Vv cm3	e	log(σ'ν)	Compressibility m2/MN	Cv m2/year
6	0.000	20.000	88.313	50.577	1.315	0.78		0.20
12	0.413	19.587	86.489	48.753	1.268	1.08	3.41	0.19
25	0.494	19.093	84.308	46.573	1.211	1.40	1.92	0.24
50	0.602	18.491	81.649	43.913	1.142	1.70	1.25	0.38
100	0.702	17.789	78.548	40.812	1.061	2.00	0.75	0.44
200	0.780	17.009	75.104	37.369	0.972	2.30	0.43	0.50
50	-0.358	17.367	76.687	38.951	1.013	1.70	0.14	0.93

σ'_v = 12.5kPa

×.

Queen's University Belfast

Geotechnical Testing Station

Client	CG	
Job Ref	Galway	
Date	10/04/2012	
Borehole number	BH05	
Sample number		
Depth m	3.0	
Soil type	Very sofy grey clay	
Test	1 D Consolidation	

Wet mass (i) g	151
Wet mass (f) g	131.1
Dry mass g	97.8
Water content (i) %	54.4
Water content (f) %	34.0
Bulk density kg/m3	1709.8
Dry density kg/m3	1107.4

Diameter mm	75	
Initial Height mm	20 Specific gravity	2.6

σ'v kPa	∆H mm	Hmm	V cm3	Vv cm3	е	l og (σ'ν)	Compressibility m2/MN	Cv m2/year
6	0.623	19.377	85.560	48.655	1.318	0.78		0.42
12	0.628	18.749	82.786	45.881	1.243	1.08	5.40	0.39
25	0.603	18.146	80.124	43.219	1.171	1.40	2.47	0.37
50	0.706	17.439	77.005	40.100	1.087	1.70	1.56	0.34
100	0.816	16.623	73.402	36.496	0.989	2.00	0.94	0.38
200	0.902	15.721	69.419	32.514	0.881	2.30	0.54	0.34
100	-0.065	15.786	69.705	32.800	0.889	2.00	0.04	0.43

ŝ.

Square root time (min)

σ'_v = 12.5kPa

ž

Queen's University Belfast

Geotechnical Testing Station

Client	CG	
Job Ref	Galway	
Date	10/04/2012	
Borehole number	BH05	
Sample number		
Depth m	6.0	
Soil type	Very sofy silty clay	
Test	1 D Consolidation	

Wet mass (i) g	144
Wet mass (f) g	122.8
Dry mass g	89.2
Water content (i) %	61.4
Water content (f) %	37.7
Bulk density kg/m3	1698.5
Dry density kg/m3	1052.1

Diameter mn	n	75				_	
Initial Height	mm	19.2	Specific gra	avity	2.6		
σ'v kPa	∆H mm	Hmm	V cm3	Vv cm3	е	log(σ'ν)	Compressibility m2/MN
6	0.114	19.087	84.279	49.971	1.457	0.78	
12	0.229	18.857	83.267	48.960	1.427	1.08	2.00
25	0.337	18.520	81.779	47.471	1.384	1.40	1.38
50	0.598	17.923	79.139	44.831	1.307	1.70	1.29
100	0.842	17.081	75.422	41.114	1.198	2.00	0.94
200	1.009	16.072	70.967	36.659	1.069	2.30	0.59
400	0.880	15.191	67.080	32.772	0.955	2.60	0.27
50	-0.353	15.544	68.637	34.329	1.001	1.70	0.07

Cv m2/year 0.28 0.40 0.38 0.36 0.33

0.36 0.40 0.75

Square root time (min)

ŝ

σ'_v = 12.5kPa

40 5 10 15 20 25 30 35 0 0.00 0.05 σ'_v =25 kPa 0.10 Settlement (mm) 0.15 0.20 0.25 0.30 0.35 0.40 Square root time (min) 40 10 20 30 50 0 0.00 0.10 σ'_v =50 kPa 0.20 Settlement (mm) 0.30 0.40 0.50 0.60

0.70

1.20

14

Queen's University Belfast

Geotechnical Testing Station

Client	CG	
Job Ref	Galway	
Date	10/04/2012	
Borehole number	BH06	
Sample number		
Depth m	1.0	
Soil type	Soft Silty clay (D)	
Test	1 D Consolidation	

Wet mass (i) g	65
Wet mass (f) g	58.3
Dry mass g	42
Water content (i) %	54.8
Water content (f) %	38.8
Bulk density kg/m3	1725.1
Dry density kg/m3	1114.6

Diameter mm	1	50				_	
Initial Height	mm	19.2	Specific gra	avity	2.65		
						le er(-ka)	
σνκρα	AH mm	Hmm	V cm3	Vv cm3	e	10g(o v)	Compressibility m2/MN
10	1.142	18.058	35.439	19.590	1.236	1.00	
20	0.281	17.777	34.887	19.038	1.201	1.30	1.56
39	0.428	17.349	34.047	18.198	1.148	1.59	1.27
60	0.287	17.062	33.484	17.635	1.113	1.78	0.79
100	0.354	16.708	32.789	16.940	1.069	2.00	0.52
200	0.587	16.121	31.637	15.788	0.996	2.30	0.35
100	-0.037	16.158	31.710	15.861	1.001	2.00	0.02

Cv m2/year 1.45 0.35

0.34

0.27 0.31 0.29

0.81

0.70

÷

Queen's University Belfast

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH06
Sample number	
Depth m	3.0
Soil type	Very sofy silty clay (D)
Test	1 D Consolidation

Wet mass (i) g	151.4
Wet mass (f) g	139
Dry mass g	104.2
Water content (i) %	45.3
Water content (f) %	33.4
Bulk density kg/m3	1785.8
Dry density kg/m3	1229.1

Diameter mm	75	
Initial Height mm	19.2 Specific gravity	2.6

oʻv kPa	∆H mm	Hmm	V cm3	Vv cm3	e	l og (σ'v)	Compressibility m2/MN	Cv m2/year
6	0.381	18.820	83.100	43.779	1.092	0.78		1.58
12	0.346	18.474	81.574	42.254	1.054	1.08	3.03	0.59
25	0.478	17.996	79.462	40.141	1.002	1.40	1.97	0.74
50	0.255	17.741	78.338	39.017	0.974	1.70	0.56	0.35
100	0.447	17.294	76.364	37.043	0.924	2.00	0.50	0.52
200	0.453	16.841	74.362	35.041	0.874	2.30	0.26	0.64
50	-0.153	16.994	75.040	35.719	0.891	1.70	0.06	2.01

σ'_v = 12.5kPa

Queen's University Belfast

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH06
Sample number	
Depth m	5.0
Soil type	Very sofy silty clay (D)
Test	1 D Consolidation

Wet mass (i) g	164.5
Wet mass (f) g	146
Dry mass g	114
Water content (i) %	44.3
Water content (f) %	28.1
Bulk density kg/m3	1940.3
Dry density kg/m3	1344.7

Diameter mm	75		
Initial Height mm	20	Specific gravity	2.6

σ ʻv kPa	∆H mm	Hmm	V cm3	Vv cm3	e	l og(σ'ν)	Compressibility m2/MN	Cv m2/year
6	0.000	20.000	88.313	45.294	1.033	0.78		0.45
12	0.227	19.773	87.310	44.291	1.010	1.08	1.87	0.26
25	0.455	19.318	85.303	42.284	0.964	1.40	1.75	0.29
50	0.456	18.862	83.288	40.269	0.918	1.70	0.94	0.40
100	0.568	18.294	80.779	37.760	0.861	2.00	0.60	0.58
200	0.641	17.653	77.947	34.928	0.797	2.30	0.35	0.54
50	-0.211	17.864	78.881	35.862	0.818	1.70	0.08	1.42

Queen's University Belfast

•

Geotechnical Testing Station

Client	CG
Job Ref	Galway
Date	10/04/2012
Borehole number	BH08
Sample number	
Depth m	1.0
Soil type	Very sofy silty clay (D)
Test	1 D Consolidation

Wet mass (i) g	151.1
Wet mass (f) g	129
Dry mass g	103
Water content (i) %	46.7
Water content (f) %	25.2
Bulk density kg/m3	1782.3
Dry density kg/m3	1214.9

Diameter mm	75	
Initial Height mm	19.2 Specific gravity	2.6

σ'v kPa	∆H mm	H mm	V cm3	Vv cm3	e	l og (σ'ν)	Compressibility m2/MN	Cv m2/year
6	1.586	17.614	77.778	38.910	0.982	0.78		0.71
12	0.356	17.259	76.208	37.340	0.943	1.08	3.33	0.27
25	0.438	16.821	74.274	35.406	0.894	1.40	1.93	0.26
50	0.471	16.349	72.193	33.325	0.841	1.70	1.11	0.37
100	0.550	15.800	69.765	30.897	0.780	2.00	0.67	0.43
200	0.529	15.271	67.429	28.561	0.721	2.30	0.33	0.53
50	-0.204	15.475	68.330	29.463	0.744	1.70	0.09	1.07

Square root time (min)

σ'_v = 12.5kPa

Square root time (min)
Petrographic Description of Borehole Samples from Galway Harbour

1. RC01 – 7.5 - 7.55mm

i) Hand specimen:

Rock is massive granite, consisting of irregular, interlocking aggregates of orthoclase feldspar (>40%), quartz (>10%), plagioclase feldspar (~20%) and a small amount of ferromagnesium mineral. All the minerals appear to be anhedral. Two very fine (<1 mm) discontinuous fractures are visible. These have been filled by calcite but have not affected the mechanical strength of the rock, which is still classified as very to extremely strong.

ii) Thin section:

Plane-polarized light (Fig. 1a)

Ferromagnesian mineral seen to be magnetite and aggregates of chloritized biotite.

Crossed polars (Fig. 1b)

Feldspar shows small amount of sericilization (hydrothermal alteration) and some very small incipient fracturing, which is very common even in igneous rocks and would not affect the mechanical strength significantly. The plagioclase feldspar is seen to be oligoclase (very low extinction angle).

The crystals are all anhedral and interlocking giving a very strong structure.

2. RC02, 14.2 m

i) Hand specimen:

Rock is granite composed of orthoclase feldspar (~40%), plagioclase feldspar (occurring in elongate, irregular aggregates), quartz (clear, glassy) and very fine grained green material scattered throughout rock but particularly visible along thin, discontinuous, incipient fractures.

The rock (hammer test) is clearly very to extremely strong mechanically.

ii) Thin section:

Plane-polarized light (Fig. 2a)

Feldspar shows slight cloudiness due to hydrothermal alteration. Thin fracture filled with calcite occurs across the field of view. One crystal of hornblende is visible.

Crossed polars (Fig. 2b)

Texture is seen to be interlocking mosaic of anhedral crystals of quartz, orthoclase and plagioclase feldspar, slightly sericitized.

3. RC03 11.9 – 12.0m

i) Hand specimen:

Rock is granite composed of interlocking anhedral crystals of approximately equal amounts of orthoclase and plagioclase feldspar (~80%), quartz (>10%) and a small amount of pale green mineral. The rock shows incipient, very fine and discontinuous rocks, but this would not have weakened it to less than very to extremely strong.

ii) Thin section

Plane-polarized light (Fig. 3a)

Colourless, cloudy feldspar (hydrothermally altered) is the dominant component of rock, followed by clear, colourless quartz and a few percent of hornblende and finegrained irregular aggregates of chlorite and magnetite (probably originally biotite (but now hydrothermally altered) associated with magnetite.

Crossed polars (Fig. 3b)

Rock shows granular sutured mosaic of anhydral, orthoclase (dominant) and subsidiary plagioclase (oligoclase) and quartz. The feldspar shows incipient alteration to seriate.

The rock is classed as very to extremely strong with little sign of incipient factures in this thin section.

Fig 2a

Depot Road Newmarket CB8 0AL Tel: 01638 606070

Causeway Geotech Ltd 8 Drumahiskey Road Balnamore, Ballymoney Co. Antrim **BT53 7QL**

FAO Paul Dunlop 16 April 2012

Dear Paul Dunlop

Test Report Number 203790 Your Project Reference 12-161 - New Port of Galway

Please find enclosed the results of analysis for the samples received 4 April 2012.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

105

Keith Jones, Technical Manager

ISO 14001

sira

- Notes to accompany report:
 - The sign < means 'less than'
 - Tests marked 'U' hold UKAS accreditation
 - Tests marked 'M' hold MCertS (and UKAS) accreditation Tests marked 'N' do not currently hold UKAS accreditation

 - Tests marked 'S' were subcontracted to an approved laboratory
 - n/e means 'not evaluated'
 - i/s means 'insufficient sample'
 - u/s means 'unsuitable sample'
 - Comments or interpretations are beyond the scope of UKAS accreditation
 - The results relate only to the items tested
 - All results are expressed on a dry weight basis
 - The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols
 - For all other tests the samples were dried at < 37°C prior to analysis
 - Uncertainties of measurement for the determinands tested are available upon request .
 - None of the test results included in this report have been recovery corrected

203790 Cover Sheet Test Report

Newmarket • Tamworth • Glasgow

Registered in England & Wales - Registration Number 6511736 - Registered Office: 11 Depot Road Newmarket Suffolk CB8 0AL

seway Geotech Ltd umahiskey Road	namore, Ballymoney	Antrim	3 7QL) Paul Dunlop
Drum	alnan	o. Ant	IT53 7	AO
0 8	ш	0	ш	

LABORATORY TEST REPORT

Results of analysis of 9 samples received 29 March 2012

12-161 - New Port of Galway

Report Date 16 April 2012

Login Batch No						203	512			
Chemtest LIMS ID			AH165	40 AH16541	AH16542	AH16543	AH16544	AH16545	AH16546	AH16547
Sample ID			BH0	BH04	BH04	BH05	BH06	BH07	BH08	BH08
Sample No			2	6	14	ი	0	10	2	11
Sampling Date			Not Prov	ided Not Provided	Not Provided					
Depth			1.00r	n 6.00m	11.00m	2.00m	6.80m	6.60m	1.00m	8.00m
Matrix			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SOP↓ Determinand↓	CAS Not	Units1	Ŧ							
2625 Organic matter		%	M 1.3	2.1	1.6	2.1	12	1.2	1.2	5.0

All tests undertaken between 02/04/2012 and 02/04/2012 * Accreditation status

This report should be interpreted in conjunction with the notes on the accompanying cover page.

Report page 1 of 1 LIMS sample ID range AH16540 to AH16548 Column page 1

Causeway Geotech Ltd 8 Drumahiskey Road Balnamore, Ballymoney Co. Antrim BT53 7QL FAO Paul Dunlop	LABORATORY TEST REPORT Results of analysis of 9 samples received 29 March 2012 12-161 - New Port of Galway	The ngru chernerry to deliver results Report Date 16 April 2012
Login Batch No Chemtest LINS ID Sample ID Sample No Sampling Date Depth Matrix SOP4 Determinand4 CAS NoJ	203512 AH16548 BH01 5 Not Provided 3.00m - 3.80m SO/L UnitsJ 7.00 4.8	
* Accreditation status This report should be interpreted in conjunction with the notes on th	he accompanying cover page.	Column page 2 Report page 1 of 1 JMS sample ID range AH16540 to AH16548

Depot Road Newmarket CB8 0AL Tel: 01638 606070

Causeway Geotech Ltd 8 Drumahiskey Road Balnamore, Ballymoney Co. Antrim **BT53 7QL**

FAO Paul Dunlop 16 April 2012

Dear Paul Dunlop

203512 **Test Report Number** Your Project Reference 12-161 - New Port of Galway

Please find enclosed the results of analysis for the samples received 29 March 2012.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services team.

Yours sincerely

10Thores

Keith Jones, Technical Manager

2183

- Notes to accompany report:
- The sign < means 'less than'
- Tests marked 'U' hold UKAS accreditation
- Tests marked 'M' hold MCertS (and UKAS) accreditation Tests marked 'N' do not currently hold UKAS accreditation
- Tests marked 'S' were subcontracted to an approved laboratory
- n/e means 'not evaluated'
- i/s means 'insufficient sample'
- u/s means 'unsuitable sample'
- Comments or interpretations are beyond the scope of UKAS accreditation
- The results relate only to the items tested
- All results are expressed on a dry weight basis
- The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols
- For all other tests the samples were dried at < 37°C prior to analysis
- Uncertainties of measurement for the determinands tested are available upon request
- None of the test results included in this report have been recovery corrected

203512 Cover Sheet **Test Report**

Newmarket • Tamworth • Glasgow

Registered in England & Wales - Registration Number 6511736 - Registered Office: 11 Depot Road Newmarket Suffolk CB8 0AL

Causeway Geotech Ltd 8 Drumahiskey Road	LABORATORY TEST REPORT	M Chemtest
Balnamore, Ballymoney Co. Antrim	Results of analysis of 1 sample	The nghi chemistry to deliver results
BT53 7QL	received 4 April 2012	Report Date
FAO Paul Dunlop	12-161 - New Port of Galway	7107 11000
Login Batch No Chemtest LIMS ID	203790 AH18489	
Sample ID Sample No	BH07 5	
Sampling Date Depth	Not Provided 3.00m - 3.90m	
Matrix SOP4 Determinand4 CAS No4	Solt * Solt	
2625 Organic matter	% M 2.1	
All tests undertaken between 10/04/2012 and 10/04/2012		olumn page 1
 Accreditation status This report should be interpreted in conjunction with the notes on the 	F dthe accompanying cover page.	sport page 1 of 1 MS sample ID range AH18489 to AH18489

ntract:	New Port of	Galway				W = core diā	ameter (Axiā	Il test) or spi	ecimen widt	h (Irregular I	lump test)		$D_e^2 = D \times D'$ (Diametral test)	
b No.:	12-161					D = core dia L = measur€	ameter (Diar ed applied lo	netral test) ad for failur	or specimen e	length (Axia	al test/Irregu	ılar lump test)	De ² = 4/p (W × D') (Axial test / Irregular lump test) 5heet 1 of 1 I ₅ = Uncorrected point load strength (P/D ₂ ²)	of 1
						P = actual a	ipplied load	for failure (I	L x calibratic	on factor)			$I_{s(50)}$ = Size corrected point load strength ($I_s \times F$)	
DINT LOA	D STRENG	TH TEST RES	ULTS			D' = distance	e between p	latens at poi	int of failure				$F = (D_e/50)^{0.45}$ Size correction factor for core other than 50mm diam	diameter
Borehole	Specimen Depth (m bgl)	Test Type A = Axial D = Diametral	x (шш)	a (mm)	ם . (mm)	(kN)	ч (kn	De² (тт ²)	De (mm)	ls (MPa)	LL.	Is (50) (MPa)	Remarks	
	, ,	I = Irregular												
RC01	7.50	٥		84	81.5	30.9	30.9	6846	82.74	4.51	1.25	5.66		
RC01	9.20	۵		84	82	28.8	28.8	6888	82.99	4.18	1.26	5.25		
RC02	12.40	D		72	70	27.5	27.5	5040	70.99	5.45	1.17	6.38		
RC02	12.00	A	72	67	65	32.0	32.0	5959	77.19	5.37	1.22	6.52		
RC02	13.50	۵		72	69.5	31.0	31.0	5004	70.74	6.19	1.17	7.24		
RC02	13.55	A	72	108	105	23.0	23.0	9626	98.11	2.39	1.35	3.23		
RC03	10.70	D		72	69	28.5	28.5	4968	70.48	5.73	1.17	6.69		
RC03	10.75	A	72	103.5	101	31.0	31.0	9259	96.22	3.35	1.34	4.49		
RC03	13.00	٥		72	69	26.5	26.5	4968	70.48	5.33	1.17	6.22		
RC03	13.10	A	72	76	73.5	26.5	26.5	6738	82.09	3.93	1.25	4.91		

Causeway Geotech Ltd

Sheet 1 of 1															f	
y (4M x10 ⁶ /p x D ² x L)	compressive strength (4P x10 ⁻⁷ /p x D ²) ed uniaxial compression strength (MCS x F) tion factor for core 1 (Dc2 (0 89 + 0 11x(1 /		Remarks		1212											
g _b = Bulk Densit	MCS = Uncorrected UCS = Size correcte F = Size correct		Uniaxial Compressive Strength (UCS) (MPa)	31.4	33.0	55.1										
			Correction Factor F	0.95	1.00	0.96									Î.	
			Measured Compressive Strength (MCS) (MPa)	33.26	33.04	57.51										
eter	length mass ad for failure	oad for failure	Bulk Density Y _b (Mg/m [°])	2.51	2.58	2.58										
D = core diame	 L = specimen M = specimen D = specimed log 		Failure Load P (kN)	184.3	134.5	234.2										
			Failure Load P (tonf)	18.5	13.5	23.5										
			Specimen Mass M (kg)	1.755	1.908	1.217										
	CT BEGUILTS	EST RESULTS	Specimen Length L (mm)	126	181.5	116										
Galway	TPENGTH TE		Specimen Diameter D (mm)	84	72	72										
New Port of (12-161 MPRESSIVE S		Specimen Depth (m bgl)	7.50	13.10	12.20										
Contract:	Job No.: IINIAXIAL CO		Borehole	RC01	RC02	RC03										

Causeway Geotech Ltd