Galway Harbour Extension

Report on Civil Works Planning Stage

Nov 2013

TOBIN CONSULTING ENGINEERS

Report on Civil Works Planning Stage

PROJECT:

GALWAY HARBOUR EXTENSION

CLIENT:

GALWAY HARBOUR COMPANY

COMPANY:

TOBIN Consulting Engineers Fairgreen House Fairgreen Galway

www.tobin.ie

DOCUMENT AMENDMENT RECORD

Client: GALWAY HARBOUR COMPANY

Project: GALWAY HARBOUR EXTENSION

Title: REPORT ON PROPOSED CIVIL WORKS

PROJECT	NUMBER: 2165			DOCUMENT REF: 2139/04/01					
A	Civil Works Design Report for Planning Stage	JOM	Nov 13	BH	Nov 13	BH	Nov 13		
Revision	Description & Rationale	Originated	Date	Checked	Date	Authorised	Date		
TOBIN Co	nsulting Engineers		•	-	•		•		

Table of Contents

- 1. General Report Introduction
 - 1.1. Foul Drainage System Overview
 - 1.2. Storm Drainage System Overview
- 2. Foul Water Drainage Design
 - 2.1. Introduction
 - 2.2. Occupancy Figures Wastewater Flow Rates
 - 2.3. Pumping Station & Rising Main Design
- 3. Storm Water Drainage Design
 - 3.1. Introduction
 - 3.2. Network
- Water Main
 4.1. General Over View
- 5. Report Conclusion

List of Appendices

- Appendix A Foul Drainage Design Calculations
- Appendix B Storm Drainage Design Calculations
- Appendix C Preliminary Rising Main details

Associated Drawings

- Drawing Nos. 2139-2207-A 2139-2210-A Foul Sewer Layouts
- Drawing Nos. 2139-2214-A 2139-2218-A Storm Drainage Layouts
- Drawing Nos. 2139-2211-A 2139-212-A Foul Longitudinal Sections
- Drawing Nos. 2139-2219-A 2139-2223-A Storm Longitudinal Sections
- Drawing No. 2139-2213-A Pumping Station Detail
- Drawing No. 2139-2224-A Bypass and Full Retention Seperator Detail
- Drawing Nos. 2139-2201-A 2139-2205-A Watermain Layout and Details
- Drawing Nos. 2139-2201-A 2139-2205-A Watermain Layout and Details
- Drawing No. 2139-2169-A Lough Atalia Bridge Road Realignment & Storm Drainage

1 INTRODUCTION

This report has been prepared to detail the Civil Works Planning submission element for the Galway Harbour Extension (GHE) Development in Galway. It should be read in conjunction with the foul, storm and watermain design drawings as outlined and noted herein. Consultation was undertaken with the Water Services Department of Galway City Council and the Storm, Foul and Watermain design was agreed in principle.

1.1 Foul Drainage System Overview

The foul drainage system has been designed to cater for the port related buildings proposed as part of this planning application (e.g. Harbour Office, Passenger Terminal, Marina Management Building) and also any building development which may occur in the future (e.g. Marina Village Buildings, Nautical Centre). It is proposed that the foul drainage will fall by gravity to a proposed pumping station. From here the effluent will be pumped to a rising main which currently exists at Galway Harbour Enterprise Park (GHEP). The existing GHEP is serviced by a twin rising main consisting of an 80mm and 100mm main. The 80mm rising main services the GHEP whilst the 100 mm rising main was constructed as a reserve main to facilitate future development. Therefore the GHE rising main will connect to the reserve 100mm GHEP rising main.

Details of the development's foul drainage network are shown on Drawing Nos. 2139-2207-A – 2139-2210-A.

1.2 Storm Drainage System Overview

The drainage system has been designed using Micro Drainage's Windes Drainage Design Software which is based on the Wallingford Procedure. Windes incorporates the 'Sewers for Adoption – 6th Edition into the design and satisfies recommendations for sustainable drainage systems as set out in the Greater Dublin Strategic Drainage Study. The storm water drainage design for the development has been designed to cater for all surface water generated from all hard surfaces within the proposed development including roadways, footpaths, buildings, yards and quays. The storm drainage has been broken down into 4 different networks (Networks A, B, C & D) each with their own outfall location. Networks A, B & C cater for all the road, yard and building areas. Network D caters for the quay areas. Each network outfalls to sea through a tideflex type non-return valve. Petrol Interceptors are incorporated into each network design. The existing storm outfall from GHEP has been diverted and outfalls at the same location as Network A. Details of the storm drainage system are shown in Drg. Nos. 2139-2214-A – 2139-2218-A.

Details of the storm drainage for the proposed road realignment under Lough Atalia bridge are shown in Drg. No. 2139-2169-A.

2 FOUL WATER DRAINAGE DESIGN

2.1 Introduction

The foul drainage system has also been designed using Micro Drainage's Windes Drainage Design Software. The pipework to the drainage system has been designed to provide for six times the dry weather flow (DWF) in accordance with the recommendations of the Greater Dublin Strategic Drainage Study. The design calculations are displayed in Appendix A. The input reference no., manhole upstream, manhole downstream, length of pipe, population equivalent, size, invert upstream (A), invert downstream (B), resulting gradient, flow rate and capacity of each foul sewer pipe within the network are tabulated. As noted in Section 1.1 the foul drainage will fall by gravity to a proposed pumping station. From here the effluent will be pumped to a rising main which currently exists in Galway Harbour Enterprise Park. The existing GHEP is serviced by a twin rising main consisting of an 80mm and 100mm main. The 80mm rising main services the GHEP whilst the 100mm rising main will connect to the reserve 100mm GHEP rising main.

Details of the development's foul drainage network are shown on Drawing Nos. 2139-2207-A – 2139-2210-A. Windes generated longitudinal sections of the proposed drainage network are detailed in Drg. Nos. 2139-2211-A – 2139-2212-A.

2.2 Occupancy Figures & Wastewater Flow Rates

The occupancy figures for the proposed development are detailed Table 2.1 below. Details of the discharge wastewater flow rates as generated by Windes can be seen attached in Appendix B. A peak discharge flow of <u>4.3 litres/sec</u> will be created by the proposed development.

The Hydraulic and BOD loading for the proposed development are also detailed in Table 2.1 below in accordance with the recommendations obtained from the EPA Wastewater Treatment Manual.

				Litres	BOD	Total	Total
	Floor Area	Occupancy	Total No. of	per Person	per	Hydraulic Loading	Organic Loading
	(m ²)	Load Factor	-	per day	per day		(Grams/Day)
Harbour Office							
Office	207	7	30	60	30	1800	900
Meeting Room	105	1	105	40	20	4200	2100
Day Bed			1	222	60	222	60
						6222	3060
Passenger							
Terminal							
Queuing &		~ -					
Waiting Area	356	0.7	509	20	10	10180	5090
Staff	356	50 	8	60	30	480	240
Office	47	7	7	60	30	420	210
Marina Mgmt						11080	5540
Building							
Office/Reception	55	7	8	60	30	480	240
Visitors	62	10	7	10	10	70	70
						550	310
Harbour							
Warehouse &							
Management Building							
Storage	900	30	30	30	20	900	600
Office	35	30 7	5	60	20 30	300	150
Onice	30	/	5	00	30	1200	750 750
Control Houses						1200	750
Staff			6	60	30	360	180
Shipping			•	00	00		100
Crew of typical							
25,00 tonne							
tanker			25	60	30	1500	750
Marina							
216 No. Berths			216	60	30	12960	6480
Future Marina Village							
Buildings							
Office	2148	7	307	60	30	18420	9210
Future Harbour							
Warehousing	1000					1000	1000
Storage	1800	30	60	30	20	1800	1200
Future Nautical Centre							
Storage	325	30	11	30	20	330	220
Training	130	1	130	20	10	2600	1300
Office / reception	85	7	13	60	30	780	390
			-				
						3710	1910

Future Oil Offices		_	_				
Office	40	7	6	60	30	360	180
Development Total (incl future proofing)						58162	29570

* Occupancy Load Factors for Retail Units as per Building Regulations Technical Guidance Document B – Fire Safety Section 1.0.10

* Staff based on standard retail employment to floor space ratio of 1No. job per 50sqm (gross)

* Occupancy Load Factors for Library per Appendix A of the Code of Practice for the Management of Fire Safety in Places of Assembly

From this data, the PE for the proposed development is calculated using the Total Organic Loading, or BOD, figure of 29,570 grams/day and dividing it by 60 grams per day per population equivalent, to get a **PE figure of 493**.

2.3 Pumping Station and Rising Main Design

2.3.1 Introduction

As outlined above, it is proposed to outfall the foul effluent by gravity to a pumping station. The location of the pumping station is shown in Drg. No. 2139-2207-A and the details of the pumping station are shown in Drg. No. 2139-2213-A. The pumping station has been designed to cater for 24-hour storage of the effluent produced by the proposed development and any future development which may arise. Designing the pumping station to cater for 24-hour storage gives a storage capacity requirement of **58,162 litres**. We are therefore proposing to provide a Precast or RC pumping station with pump sump and overflow tank having a combined capacity of **59m³**, as detailed in Drg. No. 2139-2213-A.

A proposed 100mm rising main will facilitate the pumping of effluent from the proposed pumping station to the existing 100mm rising main in GHEP. This proposed 100mm rising main location is shown in Drg. No. 2139-2007-A. The proposed 100mm Rising Main is approximately 533m long and is designed to cater for the DWF of 58,162 litres litres/day as described above. Based on a pumping rate of 15 times DWF the proposed arrangement will cater for flow of 10 l/s pumped through the 100mm Rising Main. The resulting velocity is 1.29 m/sec. Please see Appendix C for preliminary rising main calculations. The proposed pumping station pumping cycle will be synced with the existing GHEP pumping station to ensure that the only one pumping station will be pumping at any one time. This will ensure that no overloading issues will arise at the existing rising main outfall location to the Galway Main Drainage.

Any risk of septicity will be eliminated by the installation of the proprietary "Sca" Sewage Conditioner system.

3 STORM WATER DRAINAGE DESIGN

3.1 Introduction

As noted above, the storm drainage for the entire development has been designed using the Micro Drainage's Windes Drainage Design Software. The storm water drainage design has been designed to cater for surface water from public hard surfaces in the proposed development. The pipe ref. no., manhole no. upstream, manhole no. downstream, length of pipe, ground level at manhole upstream, ground level at manhole downstream, impermeable area for each pipe section, invert level upstream, invert level downstream, gradient, capacity and rate of flow for each pipe section are detailed. Windes generated longitudinal sections of the proposed drainage network are detailed in Drg. Nos. 2139-2219-A – 2139-2223-A.

Details of the storm drainage for the proposed road realignment under Lough Atalia bridge are shown in Drg. No. 2139-2169-A.

3.2 Network

As noted in Section 1.2, the storm drainage has been broken down into 4 different networks (Networks A, B, C & D) each with their own outfall location. Networks A, B & C cater for hard surfaces such as road, yard and building areas. The existing storm outfall from GHEP has been diverted and is proposed to outfall at the same location as Network A. Network D caters for the quay areas. The quay areas will be bunded and graded to a drainage channel as detailed in Drg. No. 2139-2219-A. Each network outfalls to sea through a tideflex type non-return valve. Details of the proposed outfall layout are presented in Drg. No. 2139-2225-A.

For Networks A & B all hydrocarbon pollutants will be removed using a Class 1 CNSB135 Bypass Seperator or similar prior to outfall to sea at each location. For Networks C all hydrocarbon pollutants will be removed using a Class 1 CNSB110 Bypass Seperator or similar. Drg. No. 2139-2224-A presents details of the separators. The separator will also remove silt and sedimentation from the storm water.

The storm outfall from the existing GHEP will be diverted as shown on Drg. No. 2139-2215-A at the same outfall location as Network A. The separators which exist at the current GHEP outfall locations will be retained to ensure that the diverted storm will be exclusive of hydrocarbons and

silt. All full retention separators have an automatic closure device (ACD) fitted as standard to prevent accumulated pollutants flowing through the unit when maximum storage level is reached.

For Network D, all hydrocarbon pollutants will be removed using a NSFP200 Full Retention Seperator or similar prior to outfall to sea. Details of the full retention separator are shown on Drg. No. 2139-2224-A. The separator will also remove silt and sedimentation from the storm

The storm drainage for the proposed road realignment under Lough Atalia Bridge flows to a pumping station and storage tank and is then pumped via a 100mm diameter rising main to the existing GHEP stormwater drainage network. The storage tank has been sized to cater for a 6 hour 100 year storm event.

4 WATER MAIN

4.1 General over view

The Water main has been designed in accordance with the Recommendations for Site Development Works for Housing Areas published by the Department of the Environment and Local Government. Consultation was undertaken with the Water Services Department of Galway City Council in relation to the proposed watermain layout and the design was agreed in principle.

A 300mm diameter watermain exists along the main road of the GHEP as detailed in Drg. No. 2139-2201-A. It is proposed to construct PVC-U watermain to service the as shown in Drg. No. 2139-2201-A. In accordance with Local authority standards Water meter and Logging Device (Larson Type) are proposed at the connections into the proposed sites. The proposed development will be metered and fire hydrants will be located as shown on Drg. Nos. 2139-2202-A – 2139-2205-A. All watermain will be commissioned and pressure tested to Galway County Council Standards. The typical construction details and the meter details are shown in Drg. No. 2139-2206-A. Static Storage will be provided for each proposed building in the GHE to the requirements of Galway City Council.

5 CONCLUSION

The Report should be read in conjunction with the associated Drawings, layouts and specifications. This report has been prepared as part of the new planning submission in accordance with the relevant standards. We trust that adequate detail has been provided for Wastewater, Storm water drainage and water main layout.

APPENDIX A

Foul Drainage Design Calculations

TOBIN Consulting Er	iginee	ers										Page 1	
Fairgreen House Fairgreen Road Galway												<u> </u>	iero
Date 27 July 2013 11								James O'Malley				D),	renne (
File Foul Sewer Desig	gn.fws	S					ecked By						
Micro Drainage						Sys	stem1 W.1	1.2					
					SP	READS	HEET REP	PORT - FOUL NETWO	RK				
PN	1	Length (m)	Dia (mm)	Slope (1:X)	USMH	USCL (m)	USIL (m)	DSMH	DSCL (m)	DSIL (m)	Vel (m/s)	Flow (l/s)	Cap (1/s)
1.0	000	82.00	150	136.0	1	4.700	3.750	2	4.700	3.147	0.75	0.9	13.3
1.0	01	68.00	150	134.9	2	4.700	3.147	3	4.800	2.643	0.75	2.1	13.3
1.0	02	75.00	150	134.9	3	4.800	2.643	4	4.800	2.087	0.75	2.5	13.3
1.0	03	84.00	150	135.0	4	4.800	2.087	5	4.800	1.465	0.75	2.8	13.3
1.0		81.00	150	130.2	5	4.800	1.465	16	4.800	0.843	0.77	3.0	13.6
2.0	00	90.00	150	134.9	6	4.700	3.550	8	4.800	2.883	0.75	0.0	13.3
3.0		90.00	150	134.9	7	4.800	3.650	8	4.800	2.983	0.75	0.1	13.3
2.0		81.00	150	135.0	8	4.800	2.883	13	4.800	2.283	0.75	0.3	13.3
4.0		83.00	150	135.0	9	4.700	3.550	10	4.700	2.935	0.75	0.3	13.3
4.0		80.00	150	134.9	10	4.700	2.935	13	4.800	2.342	0.75	0.3	13.3
5.0		90.00	150	134.9	11	4.800	3.650	12	4.800	2.983	0.75	0.1	13.3
5.0		90.00	150	128.6	12	4.800	2.983	13	4.800	2.283	0.77	0.1	13.6
2.0		45.00	150	135.3	13	4.800	2.283	14	4.700	1.950	0.75	0.8	13.3
2.0		56.00	150	135.3	14	4.700		15	4.800	1.537	0.75	0.8	13.3
2.0		70.00	150	100.9	15	4.800	1.537	16	4.800	0.843	0.87	1.0	15.4
1.0	05	19.00	150	134.8	16	4.800	0.843	Pumping Station	4.700	0.702	0.75	4.3	13.3

APPENDIX B

Storm Drainage Design Calculations

i) Galway Harbour Extension ii) Lough Atalia Road Realignment i) Galway Harbour Extension Calculations

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		
Date 17/08/2013 15:22	Designed By James O'Malley	
File network a.mdx	Checked By	
Micro Drainage	Network W.12.4	

<u>Spreadsheet Report</u> - STORM NETWORK A

PN	Length (m)	Dia (mm)	Slope (1:X)	Area (ha)	USMH	USCL (m)	USIL (m)	DSMH	DSCL (m)	DSIL (m)	Pro Vel (m/s)	Cap (1/s)	Flow (l/s)
S1.000	56.000	225	99.3	0.126	S1	4.700	3.404	S3	4.800	2.840	1.22	52.2	19.3
S2.000	32.000	300	241.6	0.419	S2	4.800	3.300	S3	4.800	3.168	1.14	71.2	64.9
S1.001	65.000	375	321.4	0.028	S3	4.800	2.690	S4	4.800	2.488	1.09	111.0	81.5
S1.002	76.000	525	491.3	0.860	S4	4.800	2.338	S5	4.800	2.183	1.12	217.3	189.0
S3.000	51.000	300	241.9	0.344	S6	4.800	3.300	S5	4.800	3.089	1.10	71.1	52.1
S1.003	88.000	600	500.0	0.344	S5	4.800	2.108	S11	4.700	1.932	1.21	306.0	260.1
S4.000	47.000	450	235.0	1.230	S7	4.900	3.250	S8	4.700	3.050	1.49	210.2	189.7
S4.001	60.000	675	500.0	0.960	S8	4.700	2.825	S9	4.800	2.705	1.28	417.0	318.5
S4.002	60.000	675	500.0	0.400	S9	4.800	2.705	S10	4.800	2.585	1.30	417.0	356.8
S4.003	61.000	675	500.0	0.300	S10	4.800	2.585	S11	4.700	2.463	1.31	417.0	378.4
S1.004	46.000	825	500.0	0.116	S11	4.700	1.707	S12	4.900	1.615	1.48	706.1	610.6
S1.005	90.000	825	500.0	0.896	S12	4.900	1.615	S13	4.700	1.435	1.49	706.1	680.0
S1.006	42.000	825	500.0	0.040	S13	4.700	1.435	S20	4.800	1.351	1.49	706.1	680.0
S5.000	86.000	150	99.0	0.110	S14	4.900	3.550	S15	4.900	2.682	1.14	17.8	16.0
S5.001	90.000	225	137.3	0.093	S15	4.900	2.607	S20	4.800	1.951	1.17	44.3	27.2
S6.000	46.000	150	92.0	0.090	S16	4.200	3.050	S17	3.500	2.550	1.15	18.5	13.7
S6.001	44.000	300	244.4	0.167	S17	3.500	1.750	S18	4.800	1.570	1.01	70.8	37.3
S6.002	90.000	300	240.0	0.091	S18	4.800	1.570	S19	4.900	1.195	1.07	71.4	46.2
S6.003	64.000	300	245.2	0.090	S19	4.900	1.195	S20	4.800	0.934	1.10	70.7	54.8
S1.007	10.000	900	666.7	0.000	S20	4.800	0.334	S21	4.700	0.319	1.36	767.2	734.8
S1.008	5.000	900	625.0	0.000	S21	4.700	0.319	SPetrol Interceptor	4.700	0.311	1.40	792.6	734.8
S1.009	5.000	900	625.0	0.000	SPetrol Interceptor	4.700	0.311	SNetwork A Outfall	4.700	0.303	1.40	792.6	734.8

©1982-2010 Micro Drainage Ltd

TOBIN C	onsulting E	Ingineer	S								Page	e 1		
Fairgreer Fairgreer Galway													70	<u></u>
	July 201 3 1 G Network					Design Checke	ed By Jan ed By	nes O'Ma	lley			Par	ne	J.
Micro Dra		2.0110					1 W.11.2				1			
					SPREAD	SHEET	REPOR	r - stori	M NETWORK B					
PN	Length (m)	Dia (mm)	Slope (1:X)	Area (ha)	USMH		USCL (m)	USIL (m)	DSMH	DSCL (m)	DSIL (m)	Vel (m/s)	Cap (1/s)	Flow (l/s)
7.000	90.00	450	400.9	1.039		1	4.800	3.150	2	4.900	2.925	1.01	160.5	149.9
7.001	90.00	600	500.0	0.864		2	4.900	2.775	3	4.900	2.595	1.08	306.0	252.
7.002	60.00	675	500.0	0.755		3	4.900	2.520	4	4.800	2.400	1.17	417.0	335.
7.003	69.00	750	500.0	0.954		4	4.800	2.325	14	4.700	2.187	1.24	549.9	434.
8.000	62.00	300	241.6	0.395		7	4.700	3.200	8	4.800	2.943	1.01	71.2	58.
8.001	77.00	300	241.6	0.116		8	4.800	2.943	9	4.800	2.625	1.01	71.2	70.
8.002	58.00	375	321.0	0.178		9	4.800	2.550	10	4.900	2.369	1.01	111.1	89.
8.003	51.00	375	257.0	0.305		10	4.900	2.369	14	4.700	2.170	1.13	124.3	123.
9.000	90.00	375	321.0	0.600		11	4.900	3.325	12	4.800	3.045	1.01	111.1	86.
9.001	90.00	525	491.3	0.776		12	4.800	2.895	14	4.700	2.711	1.00	217.3	181.
7.004	9.00	900	500.0	0.317		14	4.700	1.645	15	4.700	1.627	1.39	887.1	754.
7.005	12.00	900	500.0	0.000		15	4.700	1.627	Petrol Interceptor	4.700	1.603	1.39	887.1	754.
7.006	4.00	900	500.0	0.000	Petrol Interce	eptor	4.700	1.603	Network B Outfall	0.000	1.595	1.39	887.1	754.

TOBIN Co	onsulting E	ngineers	;								Page	1		
Fairgreen Fairgreen Galway												ßG	20	~~~~
	uly 201 3 12 G Network					Designe Checke	ed By Jam d By	es O'Mall	ley			Pai		<u>J</u>
Micro Dra		0.0110			ł		1 W.11.2							
					SPREAD	DSHEET	REPORT	- STORN	NETWORK C					
PN	Length (m)	Dia (mm)	Slope (1:X)	Area (ha)	USMH		USCL (m)	USIL (m)	DSMH	DSCL (m)	DSIL (m)	Vel (m/s)	Cap (1/s)	Flow (1/s)
10.000	80.00	300	241.6	0.393		1	4.900	3.400	2	4.800	3.069	1.01	71.2	57.0
10.001	72.00	375	261.9	0.515		2	4.800	2.994	3	4.800	2.719	1.11	123.1	123.0
10.002	85.00	450	376.7	0.405		3	4.800	2.644	4	4.800	2.418	1.04	165.6	164.
10.003	79.00	525	490.6	0.447		4	4.800	2.343	5	4.900	2.182	1.00	217.4	206.3
10.004	73.00 90.00	600 300	500.0 241.9	0.592 0.352		5	4.900 4.700	2.107 3.200	/ 7	4.700 4.700	1.961 2.828	1.08 1.01	306.0 71.1	261. 50.
10.005	90.00 55.00	300 600	241.9 500.0	0.352		0 7	4.700	3.200 1.961	/	4.700	2.020	1.01	306.0	294.
10.005	55.00	675	500.0	0.611		8	4.700	1.776	0	4.700	1.666	1.03	417.0	348.
10.007	55.00	750	500.0	1.135		9	4.700	1.591	10	4.700	1.481	1.24	549.9	453.
10.008	53.00	750	500.0	0.568		10	4.700	1.481	11	4.700	1.375	1.24	549.9	496.
10.009	3.00	825	500.0	0.568		11	4.700	1.300	Petrol Interceptor	4.700	1.294	1.32	706.1	551.
10.010	3.00	825	500.0	0.000	Petrol Inter	ceptor	4.700	1.294	Network C Outfall	4.700	1.288	1.32	706.1	551.

		Engineers										Page	1		
	en House en Road												lan		
Galway													L (CL	\bigcirc	
	' July 201 3							es O'Malle	әу] D),	<u>ren</u>	Del.	
		D Rev 2.sv	NS			Checked									
Micro D	rainage					System1	W.11.2								
PN	Length (m)	C. Height (mm)	Slope (1:X)	Area (ha)	USMH	SHEET	USCL (m)	<u>- STORM</u> USIL (m)	NETWORK D		DSCL (m)	DSIL (m)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	403.00	425	327.9	1.300		1	4.700	4.275		3	4.700	3.046	1.08	195.3	144.
	403.00 265.00	425 325	327.9 215.6	1.300 0.520		1 2	4.700 4.700	4.275 4.375		3 3	4.700 4.700	3.046 3.146	1.08 1.12	195.3 119.2	144. 64.
1.000 2.000 1.001						1 2 3				3 3 4					
2.000	265.00	325	215.6	0.520		1 2 3 4	4.700	4.375	Petrol Intercept	-	4.700	3.146	1.12	119.2	64

©1982-2008 Micro Drainage

 3.00
 525
 375.0
 0.000
 Petrol Interceptor
 4.700
 2.928
 6
 4.700
 2.920
 1.15
 249.1
 201.6

 5.00
 525
 384.6
 0.000
 6
 4.700
 2.408
 Network D Outfall
 4.700
 2.395
 1.14
 245.9
 201.6

1.003 1.004

ii) Lough Atalia Road Realignment Calculations

TOBIN Consulting Engineers		Page 1
Fairgreen House		
Fairgreen Road		
Galway		
Date 18/12/2013 16:21	Designed By James O'Malley	
File STORM PIPE NETWORK DESIGN.MDX	Checked By	
Micro Drainage	Network W.12.4	

				SPRE	ADSHE	ET REPOR	T – LOUGI	H ATLIA ROAD STORM	NETWORK				
PN	Length (m)	Dia (mm)	Slope (1:X)	Area (ha)	USMH	USCL (m)	USCL (m)	DSMH	DSCL (m)	DSIL (m)	Pro Vel (m/s)	Cap (l/s)	Flow (l/s)
S1.000	35.000	225	60.0	0.060	S1	3.800	3.800	S2	2.810	1.992	1.20	67.2	9.5
S1.001	15.000	225	140.0	0.080	S2	2.810	2.810	S3	2.800	1.878	1.10	43.9	21.7
S1.002	1.500	300	200.0	0.055	S3	2.800	2.800	SAttenuation Culvert	2.800	1.870	1.04	78.3	30.2
S2.000	45.000	225	26.0	0.050	S3	5.490	5.490	S5	3.780	2.534	1.54	102.4	7.9
S2.001	1.500	225	187.5	0.045	S5	3.780	3.780	SAttenuation Culvert	4.290	2.526	0.90	37.8	15.0

©1982-2010 Micro Drainage Ltd

Project No.	2139	Client :	Galway Harbour Co.		Date:	25/11/2013
Storm Storage Des	sign -	Lough				
Atalia Road	-	_				
Q = Rate of run off (l/s)	Q=A _D x I	x Cr x Cv x 2.78	Determined using Mod	lified Rational Method		
Ap =	0.29	hectares	=2,900sqm/10,000	(Impermeable Area)	2900	m ²
Cr=	1.3			(Routing Coefficient)		
Cv=	0.9			(Impermeability Factor)		
0	0.042	v Interativ (I)		0.040		70
Q=	0.943	x Intensity (I) See below for Inten	(I/sec.)	0.943	= Cr x Cv x Ap x 2	.78
100-Year return period rai	nfall figu	ures as below				
Time	Rainfal	l depth for 100 yr h	ighlighted			
(mins)	(mm)					
15	15.3			ures have been increas	ed by a factor of 1.1	
30			for climate change			
60	23.2 28.5	25.52 31.35				
<u> </u>	20.5	31.35				
360	39.5	43.45				
720	48.5	53.35				
1440	59.7	65.67				
2880	73	80.3				
Taking a 6-hour 100-yea	r retur	n period as highli	ghted above			
Rainfall (hours) R	mm depth d	Intensity = d/R (mm / hr)	Q in (l/sec.)	Volume flow in (litres/hour)	Volume of Storage required (litres) - 6 hour	
6.00	43.45	7.242	6.831	24591	147544	
		150 0				
Storage provided		150 m3	see Drg No 2139-2169)		

APPENDIX C

Preliminary GHE Rising Main Design Calculations

Dry Weather Flow for Proposed Development				58.16 m³/d	TOBIN Patrick J. Tobin & Co. Ltd.
Dry Weather Flow	58.16 m³/d	2.42 m³/hr	0.67 l/sec		
Proposed Pumping Arrangement - Option Select Pumping Arrangement such that number of pump starts per hour = Resultant duration between pump starts = Select Multiples of DWF to be Pumped Resultant duration pumping between pump starts = Resultant duration idle between pump starts = Select number of duty pumps Select number of standby pumps				8 No. 7.50 mins 15 No. 0.50 mins 7.00 mins 1 No. 1 No.	5.
	litre/day	litre/hour	m3/hour	m3/s	l/s
Dry Weather Flow	58162 l/day	2423.42	2.42	0.0007	0.67
Required Total Pumping Rate	872430 l/day	36351.25	36.35	0.0101	10.10
Selected Flow per pump			36.35	0.0101	10.10
Rising Main Diameter and Resu	Itant Velocities		C.S.A.	Velocity	Notes
Ø _{mm}	Ø _m	Q _{Max m³/s}	m²	m/sec	
80	0.08	0.0101	0.005	2.01	Velocity Adequate for Self - Cleansing
100	0.1	0.0101	0.008	1.29	Velocity Adequate for Self - Cleansing
450	0.15	0.0101	0.018	0.57	Velocity too Low for Self - Cleansing
150					Velocity too Low for Self - Cleansing